新AI模型成功预测有害基因突变,有助确定遗传疾病病因

2023-09-22
关注

英国“深度思维”(DeepMind)公司的人工智能工具“阿尔法错义”(AlphaMissense)已对2万种人类蛋白质中的7100万种可能的错义突变进行了检测,通过找出哪些小突变可能具有破坏性,来帮助医生确定导致遗传疾病的“罪魁祸首”。相关论文刊发于最新一期《科学》杂志。


AlphaMissense可以预测突变是否会影响血红蛋白(左)或囊性纤维化跨膜电导调节因子(右)等蛋白质的功能。 
图片来源:“深度思维”公司

几乎每个人出生时都携带有50—100个父母没有的突变,这导致了个体之间巨大的基因差异。对医生来说,对某个病人的基因组进行测序以找出病因极具挑战性,因为可能有成千上万个突变与这种疾病有关。“阿尔法错义”应运而生,旨在预测这些基因突变是否有害。

由于碱基置换,与某一氨基酸相对应的密码子变成其他氨基酸的密码子,其结果使合成的蛋白质的活性发生变化或失去活性,这样的突变称为错义突变。每人体内评价携带约9000个错义突变,但在所有可能发生的7100万个错义突变中,科学家只确定了其中0.1%的错义突变的影响。

“阿尔法错义”并非要厘清错义突变如何改变蛋白质的结构或稳定性,以及与其他蛋白质之间的相互作用。相反,它会将每种可能的突变蛋白质的序列与“阿尔法折叠”(AlphaFold)训练过的蛋白质的序列进行比较,查看它看起来是否“自然”,看起来“不自然”的蛋白质会被评为潜在有害。

在对已知突变开展测试时,“阿尔法错义”的表现优于其他方法。研究人员评论道,“阿尔法错义”在几项不同的性能测试中“表现优异”,将有助于科学家确定哪些致病突变应优先研究。不过,错义突变只是众多不同突变中的一种。DNA片段也可以被添加、删除、复制、翻转等。此外,许多致病突变不会改变蛋白质,而是出现在参与调节基因活性的序列附近,在确定病因时也需要考虑这些因素。


  • 科学
  • 科普
  • 基因突变
  • 阿尔法
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

早安科技

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

1146B是德科技keysight 1146B电流探头

提取码
复制提取码
点击跳转至百度网盘