储能已成为保障可再生能源规模应用,实现“双碳”目标的关键核心技术。锂硫电池理论比容量高、成本低廉、环境友好,是最具实用化应用前景的下一代储能体系之一。然而,其实用化进程却始终受限于缓慢的反应动力学以及严重的容量衰减。向锂硫电池中引入高活性催化剂,例如过渡金属化合物(TMC),已被证明是提高反应动力学的有效策略。
TMC的金属原子被认为是催化反应的活性中心,其与多硫化锂中硫的轨道杂化状态已被广泛研究。然而在不同TMC催化剂中普遍存在的非金属与多硫化锂中锂之间的相互作用,人们却一直缺乏深入理解。此外,前期研究通常只聚焦催化体系的电子状态,而忽视了活性位点几何结构对催化效果的影响机制,缺乏综合考虑锂硫电池催化体系中电子状态与几何结构的二元描述符。上述问题阻碍了研究人员对锂硫电池TMC催化剂的深入理解与理性设计。
近日,清华大学深圳国际研究生院周光敏团队与合作者基于密度泛函理论与机器学习算法,提出了一种可用于筛选锂硫电池TMC催化剂的二元描述符。该二元描述符由能带匹配指数(IBand)与晶格错配指数(ILatt)组成,分别描述了电子状态与几何结构对于催化效应的贡献,从轨道耦合与晶格畸变角度揭示了催化剂对反应动力学的影响机制。TMC催化剂中的非金属位点可同时调节IBand和ILatt,具有适中IBand和低ILatt的TMC催化剂对多硫化锂具有适中的吸附强度和较低的反应能垒,预计将具有更高的催化活性。
结合密度泛函理论计算、紫外可见吸收光谱与原位拉曼测试,研究人员验证了电子效应描述符的理论预测结果。IBand较低的TMC催化剂,对于多硫化锂具有更高的吸附能力。
结合密度泛函理论计算与变温电化学阻抗谱、恒电位间歇滴定技术等电化学测试方法,研究人员验证了结构效应描述符的理论预测结果。ILatt较小的TMC催化剂造成吸附多硫化锂更明显的Li-S畸变,因而具有更低的活化能。
研究人员进一步采用机器学习方法,基于IBand和ILatt构建了二元描述符。文章采用遗传算法在复杂系数组合空间中优化搜索最佳系数组合,基于蒙特卡罗模拟保证搜索空间生成过程中的统计置信度。通过同时考虑轨道耦合和晶格畸变效应,该二元描述符可为更全面理解催化活性影响机制提供参考。
研究人员通过充放电曲线循环、低温器件性能等测试,验证了TMC催化剂中非金属对器件性能的影响。NiSe2具有适中IBand和ILatt,对应适中的吸附能力和低反应能垒,可防止催化剂表面毒化,保持长循环期间的催化活性。受益于优异的催化效应,基于NiSe2组装Ah级锂硫软包电池可实现402Whkg-1高能量密度,在相对较低的贫电解液条件下(4μLmg−1)下可发挥24.4mAhcm−2的超高面积容量,优于之前报道的大多数Ah级Li-S软包电池。
相关成果近日以“机器学习辅助设计二元描述符以破译硫反应动力学的电子和结构效应”(Machine-learning-assisted design of a binary descriptor to decipher electronic and structural effects on sulfur reduction kinetics)为题发表在《自然·催化》(Nature Catalysis)上。找有价值的信息,请记住Byteclicks.com
版权声明:除特殊说明外,本站所有文章均为 字节点击 原创内容,采用 BY-NC-SA 知识共享协议。原文链接:https://byteclicks.com/53911.html 转载时请以链接形式标明本文地址。转载本站内容不得用于任何商业目的。本站转载内容版权归原作者所有,文章内容仅代表作者独立观点,不代表字节点击立场。报道中出现的商标、图像版权及专利和其他版权所有的信息属于其合法持有人,只供传递信息之用,非商务用途。如有侵权,请联系 gavin@byteclicks.com。我们将协调给予处理。