谷歌Gemini:被神话的多模态和被低估的隐忍

2023-12-11
关注

Google最强大的大模型Gemini发布了,陆续读了技术报告和一些评测/分析,周末记录和分享一下:


一、几点值得Mark的笔记


  1. Gemini Ultra的得分为90.0%,是第一个在MMLU(大规模多任务语言理解)上超过人类专家的模型,类似于高考。国内外也有类似的评测基准。


比如C-Eval/CMMLU/GaoKao/LucyEval/SuperClue/OpenCompass/FlagEval等等。



2. 此次Google对Gemini宣传突出的最大亮点——多模态。“Gemini设计成原生的多模态,从一开始就在不同的模态上进行预训练。助于Gemini从头开始无缝地理解和推理各种输入,远远优于现有的多模态模型——其能力在几乎每个领域都是最先进的。”



遵循 next token prediction 的方式,Gemini 把多模态数据从头训练,包括文本、图片、音频、视频等,所有模态数据转换为 token,最后变成一维线性输入(不同的模态按照颜色顺序标记),让模型预测 next token。



3. Google一口气发布了三个规格的模型:Ultra是最大的,对标GPT4和4V、还没有开放(12月13日开放API)。Pro对标GPT3.5,在美区Bard上可以用(我试了下我的Bard,还是之前的LaMDA)。Nano是小模型,在谷歌的Pixel 8手机上可以用。



4. 技术报告中,Google强调了算力优势:“我们宣布迄今为止最强大、高效和可扩展的TPU系统——Cloud TPU v5p ,旨在训练尖端的人工智能模型。”


翻译成大白话,就是:微软/OpenAI/Anthropic这些公司,利润(据说70%)都被Nvidia吃了,我的利润还是自己的。(其实微软和OpenAI也在尝试自己做芯片,只是进度慢于Google。)


5. Gemini语音识别在主要语种上有大幅提升(Bleu值比OpenAI的Wisper 2高10个点,但在其他语种上Wisper更强。机器翻译能力在WMT2023的测试集上评测的结果,也比GPT4略高)。


二、一个简单的评测


没用视频,用这张图试了下一些有多模态能力的模型。方法是:上传这张图,然后问:从设计上看,图中哪个车会跑得更快?



百度文心4.0: 



智谱清言:



ChatGPT的GPT4:



Google Bard(还不是Gemini Pro):



不多评论,不过四个同学都挺有意思~


三、几点想法


1. 关于多模态:实时处理声音、视频流、真实世界交互,意味着具身智能的一大步。可以实时接收信息并实时处理任务,更像人类的生活场景了。Google坐拥全球最大的视频网站Youtube,训练多模态模型条件优越。而且最近大火的文生图Midjourney和文生视频Runway/Pika,证明了多模态在商业上的潜力。


不过,从智能的角度说,多模态被神化了。相比于文本语言模型,多模态模型从智能上来说提升并不大,模型在理解、推理、创造方面并没有显著的提升。除了视频的训练难度,我猜想,我们低估了文本。Rust创始人Graydon Hoare说过:“所有的文学和诗歌、历史和哲学、数学、逻辑、编程和工程都依靠文本编码来表达它们的想法,这不是一个巧合”。


文本确实保存了人类智慧的精华,古今中外的智慧、对世界万物的认知和发现,自有人类文字记载以来,几乎都存到文本中。


一方面,GPT只是一个读了万卷书的“书呆子”,却已经能具备强大的常识、理解、推理和创造力,颇有点“不出户,知天下;不窥牖,见天道“的味道。另一方面,大自然这本书,到底怎么读?这似乎是一个巨大的问题。从真实世界学习知识,就像行万里路相比于读万卷书,低效太多。


2. Gemini没有现场演示,网传一些复现视频和Demo视频不符,有夸大宣传嫌疑。不过,从Bard不断缩小和ChatGPT差距的事实,以及Google综合能力判断,Gemini Ultra能力不会和宣传的出入太大。


Gemini这一仗奠定了AI领域的双子星格局,我们都低估了Google的隐忍。


从竞争格局看,无论是Meta的开源Llama2,还是主打安全的Anthropic、马斯克的X.ai,目前的差距都拉大了。


3. Google的优势有这些:


组织方面,今年年初DeepMind和Google Brain的合并,解决了力量分散和认知不统一的问题,化劣势为优势。


人才方面,领军人物是AlphaGo的推动者,对AGI理解深刻的Demi Hassabis,首席科学家是工程师传说级人物Jeff Dean。人数方面,技术报告作者栏的人数好几页,已将近千人。已经比OpenAI的人数多(七百多人)。


算力/算法/工程方面:算力上谷歌不像微软和OpenAI高度依赖英伟达,有Cloud TPU v5p。算法上,谷歌是Transformer的发明者,是一直以来算法的领头羊;还有搜索业务本身积累的底层算法和工程能力。


生态方面,Google C端强于微软,微软除了云主要是window/office,而Google拥有几乎微软+苹果的C端能力。另外,模型层和应用层都在一个体系下,动作应该比OpenAI和微软的联盟快。


4. 当然,OpenAI的优势至少也还有这些:


GPT4是3月就发布的,时间上领先了Gemini Ultra 9个月,过几个月是否会发布GPT5?


ChatGPT的是一个Killer app,紧随其后的GPT4发布,OpenAI占领了用户心智,GPT也几乎成了大模型的代名词。


全球一亿多用户形成的用户反馈和数据飞轮,大规模的落地已经铺开。


微软快得不像大公司的Copilot和Azure云渗透,OpenAI的创业心态,关于GPTs和GPT store的生态野望,都是厚实的肌肉。


5. 被神话的多模态前景,被低估的Google的隐忍,被加速的AI进程,被喧嚣淹没的AI风险提醒。


这可能是我们——依然处于早期矇昧的人类,在取得亘古未有的生产力跃迁前的徘徊,也有可能是文明充分发育后,在被硅基超越的悬崖边缘的试探。


不管怎么样,这注定是一段风起云涌,激荡数年,值得观察和记录的人类历史。


本文来自微信公众号:David的AI全景图(ID:aifromchina),作者:李光华DavidLee

您觉得本篇内容如何
评分

相关产品

Honeywell 霍尼韦尔智能工业 在线/便携烟气分析仪专用传感器 气体传感器

CO 传感器;SO2传感器;NO2 传感器;NO传感器;氧气传感器

微著科技 高性能传感器ASIC解决方案 MEMS传感器

微著科技是国内为数不多能够给传感器厂商提供定制高性能传感器解决方案的团队,目前已为国内众多院所及知名传感器公司提供了十余个传感器解决方案并已经实现量产。微著传感器ASIC方案的特点:成熟的仪表信号模块IP易于快速搭建;系统方案超低噪声;成熟的24ADC可同时实现模拟数字传感器方案设计;高效率及丰富的方案设计经验。

南方泰科 TGM 压力传感器

TGM是一款SOP8封装的压阻式MEMS压力传感器,其压力传感器芯片封装在 SOP8 塑封壳内。在传感器压力量程内,当用固定电压供电时,传感器产生毫伏输出电压,正比于输入压力。压力传感器芯片为绝压,可提供不同的压力量程的SOP8 压力传感器。

鑫精诚传感器 XJC-T001 压力传感器

◆传感器激光焊接密封,环境适应性较强 ◆球形联接件,始终保持模块的垂直称重状态 ◆支撑螺栓,防止设备倾覆且方便维护 ◆接地装置,保护传感器免受电源浪涌冲击 ◆过载保护装置,保护传感器免受冲击力

Huba Control 富巴 525系列 压力传感器

525系列压力传感器采用集公司20多年研发经验的陶瓷压力传感器芯片技术。该系列压力传感器可选压力范围大,电气连接形式多。最小量程为50mbar。大批量使用具有很好的性价比。

佰测传感 MS71 传感器

MS71差压传感器

Cubic 四方光电 PM3009BP 室外粉尘传感器

PM3009BP是一款专门针对餐饮油烟监测的油烟传感器,其采用旁流采样方式,自带除水雾装置,结合智能颗粒物识别算法,确保传感器能够快速准确的检测油烟浓度的变化,同时创新的镜头自清洁技术的应用,能够长效防护传感器油烟污染,大幅度延长传感器的使用寿命。

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘