Mighty Morphin’ Turtle Robot Goes Amphibious by Shifting Leg Shape

2022-12-26
关注

A new transforming turtle robot can explore treacherous regions where the land meets the sea—and may lead to future machines that navigate complex real-world conditions.

Combining the best mobility features of an ocean-swimming turtle and a land-walking tortoise, the Amphibious Robotic Turtle (ART), described recently in Nature, can morph its limbs from turtlelike flippers to tortoiselike legs. “Most amphibious robots … use dedicated propulsion systems in each environment,” says Yale University roboticist Rebecca Kramer-Bottiglio, who is the senior author on the paper. “Our system adapts a single unified propulsion mechanism for both environments: it has four limbs, and those limbs can transition between a flipper state for aquatic locomotion and a leg state for terrestrial locomotion.”

Each morphing limb is surrounded by a composite polymer material that is malleable when hot and stiff when cool. To change the limb’s shape, built-in copper heaters warm and soften the outer material. Then a soft robotic “muscle” underneath swells or deflates, shifting a flat flipper into a rounded leg, or vice versa. Finally, the polymer cools and hardens around the new shape over one to two minutes. The soft robotic limbs attach to more traditional “hard” robotic shoulder joints, which incorporate three electronic motors so ART can “crawl” or “creep” on land as well as “paddle” or “flap” in water. These joints connect to a modular chassis, where sealed PVC tubes protect the robot’s electronic components from water. A 3-D-printed “shell” gives the robot a streamlined shape and a space that can hold air or ballast to adjust buoyancy.

Integrating both soft and traditional robotics gives ART its transforming ability, says Tønnes Nygaard, a roboticist at Oslo Metropolitan University, who did not contribute to the new study. “Very strict, rigid modes of locomotion [are] a necessity when you use traditional robotic techniques,” he adds. “But now with techniques like these from soft robotics, you might be able to do something that’s a bit more fluid.”

Such adaptive techniques might eventually help robots trek across the many different surfaces and environments found in the real world, without having to tote an extra propulsion system that might make them move less efficiently. Kramer-Bottiglio’s team found that ART uses about the same amount of energy as robots built for just one environment.

The robotic tortoise isn’t at the finish line yet: the current prototype still requires a tether to provide power and communication, and its movements are slow and awkward. But the researchers are working to improve these issues. “I’m very excited to see how far they’ve come,” Nygaard says. “And I’m very interested to see what will come out of this group in a couple of years.”

参考译文
强大的变形龟机器人通过改变腿型实现两栖
一种新的变形乌龟机器人可以探索陆地与海洋交汇的危险区域,这可能会导致未来的机器在复杂的现实环境中导航。最近在《自然》杂志上描述的两栖机器龟(ART)结合了在海洋中游泳的海龟和在陆地上行走的乌龟的最佳机动性特征,它可以将四肢从乌龟状的鳍状肢变成乌龟状的腿。“大多数两栖机器人在每种环境下都使用专用的推进系统,”耶鲁大学机器人学家丽贝卡·克雷默-博提利奥说,她是这篇论文的高级作者。“我们的系统适用于两种环境的单一统一推进机制:它有四个四肢,这些四肢可以在水中运动的鳍状状态和陆地运动的腿状状态之间转换。”每个变形肢体都被一种复合聚合物材料包围,这种材料在热的时候是可塑的,在冷的时候是刚性的。为了改变肢体的形状,内置的铜加热器加热并软化外部材料。然后下面柔软的机器人“肌肉”膨胀或收缩,将扁平的鳍状肢变成圆形的腿,反之亦然。最后,聚合物在新形状周围冷却并在一到两分钟内硬化。柔软的机器人四肢连接到更传统的“硬”机器人肩关节上,它包含三个电子马达,因此ART可以在陆地上“爬行”或“爬行”,也可以在水中“划桨”或“拍打”。这些关节连接到模块化的底盘上,密封的PVC管保护机器人的电子组件不受水的侵害。3d打印的“外壳”为机器人提供了流线型的形状和一个可以容纳空气或镇流器来调节浮力的空间。奥斯陆城市大学的机器人专家奈加德(Tønnes Nygaard)说,将软机器人和传统机器人结合起来,使ART具有了改造能力。奈加德没有参与这项新研究。“当你使用传统的机器人技术时,非常严格、严格的运动模式是必要的,”他补充道。“但现在有了这些来自软体机器人的技术,你也许能做一些更流畅的事情。”这种自适应技术最终可能会帮助机器人在现实世界中的许多不同表面和环境中跋涉,而不必携带可能会降低它们移动效率的额外推进系统。克雷默-波提利奥的团队发现,ART使用的能量与仅为一个环境建造的机器人相同。机器乌龟还没有达到终点线:目前的原型仍然需要一根缆绳来提供动力和通信,而且它的动作缓慢而笨拙。但研究人员正在努力改善这些问题。尼加德说:“我很高兴看到他们已经走了这么远。“我很想看看这个团队在几年后会有什么成果。”
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘