Are Quantum Computers about to Break Online Privacy?

2023-01-10
关注

A team of researchers in China has unveiled a technique that—theoretically—could crack the most common methods used to ensure digital privacy, using a rudimentary quantum computer.

The technique worked in a small-scale demonstration, the researchers report, but other specialists are sceptical that the procedure could be scaled up to beat ordinary computers at the task. Still, they warn that the paper, posted late last month on the arXiv repository, is a reminder of the vulnerability of online privacy.

Quantum computers are known to be a potential threat to current encryption systems, but the technology is still in its infancy. Researchers typically estimate that it will be many years until quantum computers can crack cryptographic keys—the strings of characters used in an encryption algorithm to protect data—faster than ordinary computers.

Researchers realized in the 1990s that quantum computers could exploit peculiarities of physics to perform tasks that seem to be beyond the reach of ‘classical’ computers. Peter Shor, a mathematician who is now at the Massachusetts Institute of Technology in Cambridge, showed in 1994 how to apply the phenomena of quantum superposition—which describes the ability of atomic-sized objects to exist in a combination of multiple states at the same time—and quantum interference, which is analogous to how waves on a pond can add to each other or cancel each other out , to factoring integer numbers into primes, the integers that cannot be further divided without a remainder.

Shor’s algorithm would make a quantum computer exponentially faster than a classical one at cracking an encryption system based on large prime numbers—called Rivest–Shamir–Adleman, or RSA, after the initials of its inventors—as well as some other popular cryptography techniques, which currently protect online privacy and security. But implementing Shor’s technique would require a quantum computer much larger than the prototypes that are available. The size of a quantum computer is measured in quantum bits, or qubits. Researchers say it might take one million or more qubits to crack RSA. The largest quantum machine available today—the Osprey chip, announced in November by IBM—has 433 qubits.

A fresh approach

Shijie Wei at the Beijing Academy of Quantum Information Sciences and collaborators took a different route to beat RSA, based not on Shor’s but on Schnorr’s algorithm—a process for factoring integer numbers devised by mathematician Claus Schnorr at Goethe University in Frankfurt, Germany, also in the 1990s. Schnorr’s algorithm was designed to run on a classical computer, but Wei’s team implemented part of the process on a quantum computer, using a procedure called the quantum approximate optimization algorithm, or QAOA.

In the paper, which has not yet been peer reviewed, the authors claim that their algorithm could break strong RSA keys—numbers with more than 600 decimal digits—using just 372 qubits. In an e-mail to Nature on behalf of all the authors, Guilu Long, a physicist at Tsinghua University in China, cautioned that having many qubits is not enough, and that current quantum machines are still too error-prone to do such a large computation successfully. “Simply increasing the qubit number without reducing the error rate does not help.”

Chao-Yang Lu, a physicist who builds quantum computers at the University of Science and Technology of China in Hefei and who was not involved in the project, says that running the QAOA algorithm on such a small machine would require each of the 372 qubits to work without errors 99.9999% of the time. State-of-the-art qubits have barely reached 99.9% accuracy.

The team demonstrated the technique on a 10-qubit quantum computer to factor the more-manageable, 15-digit number 261,980,999,226,229. (It splits into two primes, as 15,538,213 × 16,860,433.) The researchers say this is the largest number yet to have been factored with the aid of a quantum computer—although it is much smaller than the encryption keys used by modern web browsers.

Controversial paper

The trouble is, no one knows whether the QAOA makes factoring large numbers faster than just running Schnorr’s classical algorithm on a laptop. “It should be pointed out that the quantum speedup of the algorithm is unclear,” write the authors. In other words, although Shor’s algorithm is guaranteed to break encryption efficiently when (and if) a large-enough quantum computer becomes available, the optimization-based technique could run on a much smaller machine, but it might never finish the task.

Michele Mosca, a mathematician at the University of Waterloo in Canada, also points out that the QAOA is not the first quantum algorithm known to be able to factor whole numbers using a small number of qubits. He and his collaborators described one in 2017. So researchers already knew that there is nothing fundamental that requires quantum computers to be very large to factor numbers.

Other researchers have complained that, although the latest paper could be correct, the caveat regarding speed comes only at the very end of it. “All told, this is one of the most misleading quantum computing papers I’ve seen in 25 years,” blogged quantum-computing theorist Scott Aaronson at the University of Texas at Austin.

In his e-mail, Long says that he and his collaborators plan to change the paper and will move the caveat higher up. “We welcome the peer review and the communication with scientists around the world,” the statement added.

Even if the Schnorr-based technique won’t break the Internet, quantum computers could eventually do so by running Shor’s algorithm. Security researchers have been busy developing a number of alternative cryptographic systems that are seen as less likely to succumb to a quantum attack, called post-quantum or quantum-safe. But researchers might also discover better quantum algorithms in the future that can beat these systems, with calamitous consequences.

“Confidence in digital infrastructures would collapse,” says Mosca. “We’d suddenly switch from managing the quantum-safe migration through technology lifecycle management to crisis management,” he adds. “It won’t be pretty any way you slice it.”

This article is reproduced with permission and was first published on January 6 2023.

参考译文
量子计算机将打破网络隐私?
中国的一组研究人员公布了一项技术,从理论上讲,该技术可以利用基本的量子计算机破解用于确保数字隐私的最常用方法。研究人员报告说,这项技术在小规模的演示中起了作用,但其他专家怀疑这项技术能否扩大规模,在这项任务上击败普通计算机。尽管如此,他们警告说,上个月底发表在arXiv知识库上的这篇论文提醒人们注意网络隐私的脆弱性。众所周知,量子计算机是当前加密系统的潜在威胁,但该技术仍处于起步阶段。研究人员通常估计,量子计算机要比普通计算机更快地破解加密密钥(加密算法中用于保护数据的字符串)还需要很多年。研究人员在20世纪90年代意识到,量子计算机可以利用物理学的特性来执行“经典”计算机无法完成的任务。现任职于剑桥麻省理工学院的数学家彼得·肖尔在1994年展示了如何应用量子叠加现象(描述原子大小的物体同时以多种状态组合存在的能力)和量子干涉现象(类似于池塘里的波可以相互叠加或相互抵消),将整数分解为质数,没有余数就不能被除的整数。肖尔的算法将使量子计算机在破解基于大素数的加密系统(被称为Rivest-Shamir-Adleman,或RSA,以其发明者的首字母命名)以及其他一些目前保护在线隐私和安全的流行加密技术方面的速度比经典计算机快出指数级。但是实现肖尔的技术需要一台比现有原型大得多的量子计算机。量子计算机的大小是以量子比特或量子位来衡量的。研究人员表示,破解RSA可能需要100万或更多的量子比特。目前最大的量子机器——11月ibm宣布的鱼鹰芯片——拥有433个量子比特。北京量子信息科学研究院的魏世杰及其合作者采用了不同的方法来击败RSA,他们不是基于肖尔算法,而是基于施诺尔算法——一种由德国法兰克福歌德大学数学家克劳斯·施诺尔(Claus Schnorr)在20世纪90年代设计的整数分解算法。Schnorr的算法被设计为在经典计算机上运行,但魏的团队在量子计算机上实现了部分过程,使用了一种称为量子近似优化算法(QAOA)的程序。在这篇尚未经过同行评审的论文中,作者声称他们的算法仅使用372个量子比特就可以破解强RSA密钥(超过600个十进制数字)。在代表所有作者给《自然》杂志的一封电子邮件中,中国清华大学物理学家龙桂路警告说,有很多量子比特是不够的,目前的量子机器仍然太容易出错,无法成功地进行如此大规模的计算。“仅仅增加量子比特数而不降低错误率并没有帮助。”在合肥的中国科学技术大学建造量子计算机的物理学家陆朝阳没有参与这个项目,他说在这样一个小机器上运行QAOA算法需要372个量子比特中的每个量子比特在99.9999%的时间里都能正常工作。最先进的量子位的精度勉强达到99.9%。 该团队在一台10个量子比特的量子计算机上演示了这项技术,以分解更易于管理的15位数字261,980,999,226,229。(它分为两个质数,即15,538,213 × 16,860,433。)研究人员说,这是迄今为止借助量子计算机分解出来的最大数字——尽管它比现代网络浏览器使用的加密密钥小得多。问题是,没有人知道QAOA是否比在笔记本电脑上运行施诺尔的经典算法更快地分解大数。“应该指出的是,该算法的量子加速尚不清楚,”作者写道。换句话说,虽然肖尔的算法保证在足够大的量子计算机可用时有效地打破加密,但基于优化的技术可以在更小的机器上运行,但它可能永远无法完成任务。加拿大滑铁卢大学的数学家Michele Mosca也指出,QAOA并不是已知的第一个能够使用少量量子比特分解整数的量子算法。他和他的合作者在2017年描述了一个。因此,研究人员已经知道,没有什么基本的东西需要量子计算机非常大到可以分解数。其他研究人员抱怨说,尽管最新的论文可能是正确的,但关于速度的警告只是在最后才出现。德克萨斯大学奥斯汀分校的量子计算理论家Scott Aaronson在博客中写道:“总而言之,这是我25年来看到的最具误导性的量子计算论文之一。”在他的电子邮件中,Long说他和他的合作者计划修改这篇论文,并将警告放在更高的位置。“我们欢迎同行评议以及与世界各地科学家的交流,”该声明补充道。即使基于肖尔的技术不会破解互联网,量子计算机最终也可以通过运行肖尔的算法来破解互联网。安全研究人员一直在忙着开发许多被认为不太可能屈服于量子攻击的替代加密系统,这些系统被称为后量子或量子安全。但研究人员也可能在未来发现更好的量子算法,可以击败这些系统,带来灾难性的后果。“对数字基础设施的信心将会崩溃,”莫斯卡说。他补充说:“我们会突然从通过技术生命周期管理管理量子安全迁移转向危机管理。”“不管怎么切,都不好看。”本文经许可转载,首次发布于2023年1月6日。
  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

评论

您需要登录才可以回复|注册

提交评论

广告

scientific

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

数据和自动化如何帮助实现可持续发展

提取码
复制提取码
点击跳转至百度网盘