Artificial Intelligence Nails Predictions of Earthquake Aftershocks

2023-03-30
关注

A machine-learning study that analysed hundreds of thousands of earthquakes beat the standard method at predicting the location of aftershocks.

Scientists say that the work provides a fresh way of exploring how changes in ground stress, such as those that occur during a big earthquake, trigger the quakes that follow. It could also help researchers to develop new methods for assessing seismic risk.

“We’ve really just scratched the surface of what machine learning may be able to do for aftershock forecasting,” says Phoebe DeVries, a seismologist at Harvard University in Cambridge, Massachusetts. She and her colleagues report their findings on 29 August in Nature.

Aftershocks occur after the main earthquake, and they can be just as damaging—or more so—than the initial shock. A magnitude-7.1 earthquake near Christchurch, New Zealand, in September 2010 didn’t kill anyone: but a magnitude-6.3 aftershock, which followed more than 5 months later and hit closer to the city centre, resulted in 185 deaths.

Soldiers stand in front of the Sensacion hotel, which collapsed during the powerful earthquake that struck Mexico on September 8, 2017. Credit: Victoria Razo Getty Images

Seismologists can generally predict how large aftershocks will be, but they struggle to forecast where the quakes will happen. Until now, most scientists used a technique that calculates how an earthquake changes the stress in nearby rocks and then predicts how likely that change would result in an aftershock in a particular location. This stress-failure method can explain aftershock patterns successfully for many large earthquakes, but it doesn’t always work.

There are large amounts of data available on past earthquakes, and DeVries and her colleagues decided to harness them to come up with a better prediction method. “Machine learning is such a powerful tool in that kind of scenario,” DeVries says.

Neural networking

The scientists looked at more than 131,000 mainshock and aftershock earthquakes, including some of the most powerful tremors in recent history, such as the devastating magnitude-9.1 event that hit Japan in March 2011. The researchers used these data to train a neural network that modelled a grid of cells, 5 kilometres to a side, surrounding each main shock. They told the network that an earthquake had occurred, and fed it data on how the stress changed at the centre of each grid cell. Then the scientists asked it to provide the probability that each grid cell would generate one or more aftershocks. The network treated each cell as its own little isolated problem to solve, rather than calculating how stress rippled sequentially through the rocks.

When the researchers tested their system on 30,000 mainshock-aftershock events, the neural-network forecast predicted aftershock locations more accurately than did the usual stress-failure method. Perhaps more importantly, DeVries says, the neural network also hinted at some of the physical changes that might have been happening in the ground after the main shock. It pointed to certain parameters as potentially important—ones that describe stress changes in materials such as metals, but that researchers don’t often use to study earthquakes.

The findings are a good step towards examining aftershocks with fresh eyes, says Daniel Trugman, a seismologist at the Los Alamos National Laboratory in New Mexico. “The machine-learning algorithm is telling us something fundamental about the complex processes underlying the earthquake triggering,” he says.

The latest study won’t be the final word on aftershock forecasts, says Gregory Beroza, a geophysicist at Stanford University in California. For instance, it doesn’t take into account a type of stress change that happens as seismic waves travel through Earth. But “this paper should be viewed as a new take on aftershock triggering”, he says. “That’s important, and it’s motivating.”

This article is reproduced with permission and was first published on August 29, 2018.

参考译文
人工智能预测地震余震
一项分析了数十万次地震的机器学习研究在预测余震位置方面击败了标准方法。科学家们说,这项工作为探索地应力的变化(比如大地震期间发生的地应力变化)如何引发随后的地震提供了一种新的方式。它还可以帮助研究人员开发评估地震风险的新方法。马萨诸塞州剑桥市哈佛大学的地震学家菲比·德弗里(Phoebe DeVries)说:“我们真的只是触及了机器学习可能用于余震预测的表面。”她和她的同事在8月29日的《自然》杂志上报告了他们的发现。余震发生在主震之后,它们的破坏力可能和最初的震级一样大,甚至更大。2010年9月,新西兰克赖斯特彻奇附近发生7.1级地震,没有造成人员死亡,但5个多月后发生的6.3级余震,袭击了更靠近市中心的地方,造成185人死亡。地震学家通常可以预测余震的强度,但他们很难预测地震会发生在哪里。到目前为止,大多数科学家使用的技术是计算地震如何改变附近岩石的应力,然后预测这种变化在特定地点导致余震的可能性有多大。这种应力-失效方法可以成功地解释许多大地震的余震模式,但它并不总是有效。关于过去的地震有大量的数据,DeVries和她的同事们决定利用这些数据来提出一种更好的预测方法。“在这种情况下,机器学习是一个非常强大的工具,”DeVries说。科学家们研究了超过13.1万次主震和余震,包括近期历史上最强烈的一些地震,比如2011年3月袭击日本的毁灭性的9.1级地震。研究人员利用这些数据训练了一个神经网络,该网络模拟了一个网格细胞,每边5公里,围绕每个主激波。他们告诉该网络发生了地震,并向其输入每个网格单元中心的应力变化数据。然后,科学家们要求它提供每个网格单元产生一次或多次余震的概率。该网络将每个细胞视为单独的小问题来解决,而不是计算应力如何在岩石中依次波动。当研究人员在3万次主震-余震事件中测试他们的系统时,神经网络对余震位置的预测比通常的应力-失效方法更准确。也许更重要的是,DeVries说,神经网络还暗示了一些可能在主震后发生在地面上的物理变化。它指出了一些可能很重要的参数,这些参数描述了金属等材料的应力变化,但研究人员并不经常使用这些参数来研究地震。新墨西哥州洛斯阿拉莫斯国家实验室的地震学家丹尼尔·特鲁格曼说,这些发现是用新的眼光研究余震的很好的一步。他说:“机器学习算法告诉我们一些地震触发背后复杂过程的基本信息。”加州斯坦福大学(Stanford University)的地球物理学家格雷戈里·贝罗扎(Gregory Beroza)说,最新的研究不会是余震预测的最终结论。例如,它没有考虑地震波穿过地球时发生的一种应力变化。但他表示:“这篇论文应被视为对余震触发的新研究。”“这很重要,也很激励人。”本文经授权转载,首次发布于2018年8月29日。
  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

评论

您需要登录才可以回复|注册

提交评论

scientific

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

软体机器人迈向独立

提取码
复制提取码
点击跳转至百度网盘