How Is Gigabit LTE Different from 5G?

2023-03-29
关注

Gigabit LTE: The 4G Solution for High-Speed Cellular Broadband

5G receives much attention as it has become table stakes for consumers. Gigabit LTE, the 4G technology that introduced no-pause streaming video on our smartphones, is its lesser-known precursor. It’s an evolution of 4G LTE that can provide dependable mobile broadband access at speeds surpassing wired broadband.  

Coverage is improving fast as carriers roll out 5G at breakneck speed. However, Gigabit LTE remains available with nationwide coverage worldwide. 5G is a recent technology with new radio waveforms and new modems. Therefore, the price of 5G will be higher than 4G products for some time.  

The cost of the new 5G chipsets will include a price premium because of all the new features in the devices. On the other hand, 4G device prices will decrease as they achieve an economy of scale with large deployments. 

Gigabit LTE vs. 4G LTE 

A greater focus on data transmission came with the fourth-generation mobile communication standard (4G). Previous cellular standard generations (2G and 3G) centered on voice and text capabilities, catering to pre-smartphone consumers.  

For smartphones and mobile broadband communication, the LTE-Advanced (LTE-A) standard was approved in 2011 (3GPP Release 10). It delivered peak download data rates of 1 Gbps. 

LTE-Advanced Pro (LTE-A Pro) enhanced Gigabit LTE capabilities. 3GPP approved this standard circa 2015 with Release (Rel) 13. LTE-A Pro took 4G a step further. It provided peak download speeds into the 3 Gbps range, depending on networks’ availability of high carrier aggregation  (up to 32 20-MHz carriers allowed in LTE-A Pro).  

Key 5G technologies and strategies enable LTE-A Pro to prove the robustness and resilience of these ultrahigh-speed connections. The connection speed can be faster than wired broadband. Those include: 

Carrier Aggregation 

Four Antennas Help LTE Achieve 1 Gigabit Per Second Speeds Allowing for Novel Applications

Mobile network operators (MNOs) can provide increased data speeds. They combine the data-carrying capabilities from multiple sections of the radio spectrum, known as “carriers,” to send and receive data.  

Carrier aggregation combines an MNO’s often non-contiguous carriers within one or more spectrum bands. It expands data pathway width and carrying capacity to allow for higher capacity and speeds. Gigabit LTE requires five or more carriers aggregated to push theoretical data rates to peak at levels higher than 3 Gbps.  

With 5G taking more spectrum share, the industry trend will eventually migrate all devices to 5G. However, that will take more than a decade to happen. Until then, LTE will fill the gap for mid-tier devices.  

With 3xCA, LTE devices will get decent speeds for many broadband use cases. In addition, high-tier devices that require multigigabit speeds will eventually migrate to 5G. 

License Assisted Access (LAA) 

To increase data-carrying radio spectrum capacity, LAA uses the unlicensed 5 GHz band in conjunction with the MNO’s licensed spectrum. Licensed spectrum is known as “cleared spectrum.” Nobody other than the licensee is using that spectrum within the regional boundaries of the license.  

Unlicensed spectrum is available for various uses like Wi-Fi, which also functions within the 5 GHz band. LAA must work around these other users to apply techniques like Listen-Before-Talk (LBT) function to identify and utilize unused channels. 

256-QAM 

Quadrature Amplitude Modulation (QAM) is an efficient two-domain encoding strategy. It leverages amplitude and frequency modulations to encode information in the radio waveforms. The higher the QAM number, the more information the waveforms can carry.  

Before 256-QAM, there was 64-QAM. When 64-QAM is used, 6 bits of information can be in each encoded symbol, so 2^6 equals 64. In 256-QAM, 8 bits of data can be packed in the same symbol, so 2^8 equals 256. 256-QAM bit rates are 30% faster than 64-QAM bit rates.  

This increased data rate means 256-QAM requires a better signal-to-noise ratio (SNR) than 64-QAM. So when a radio is in good reception and gets a strong signal, it can perform 30% better than the older system based on 64-QAM. 

4 x 4 Multiple-Input and Multiple-Output (MIMO) Technology 

As carrier aggregation achieves higher bandwidths with multiple carriers, so does MIMO with multiple antenna paths per band. Gigabit LTE networks have standardized four antennas on the base station and four on the device. These antennas improve spectral efficiency and data speeds, allowing the equipment to connect with the steadiest available signals. 

Gigabit LTE vs. 5G 

While Gigabit LTE and 5G are similar, a few key details set them apart. 5G adds new bands in available frequencies in the sub-6 GHz range and ultrahigh millimeter wave (mmWave) spectrum (up to 40 GHz). 4G is mostly deployed in the lower frequencies (up to 2.5 GHz) except for a few bands in 3.5 GHz (also called mid-band).  

Furthermore, 4G spectrum is limited to a maximum bandwidth of 20 MHz. This means each 4G carrier’s capacity is limited to 20 MHz. On the other hand, 5G defines new spectrum bands that are 100 MHz wide. We can imagine how aggregating a few carriers can achieve high speeds in 5G. 

Since bandwidth-rich mmWave cells cover small areas, dense concentrations are necessary to achieve target user experience levels. A 5G experience significantly different from Gigabit LTE requires constructing new infrastructure, which will take time. 

Another differentiator is that 5G networks can work in two modes: stand-alone (SA) or non-stand-alone (NSA). SA indicates that the system operates with all 5G radio and core networks. NSA uses LTE and 5G resources combined in different modes.  

With 3GPP Rel 16 published in 2020, 5G became a solid alternative to wired networks used in critical industrial processes. These processes are dominated by various wire and fiber-based time-sensitive networks (TSN). Rel 16’s ultrareliable low latency communication (URLLC) capabilities specify link reliability better than 99.9999% and latencies in the millisecond range. 

Applications and Use Cases of Gigabit LTE Networks 

Gigabit LTE’s broad availability and falling connectivity costs offer the advantage of easier adoption. Unlike 5G, it doesn’t require constructing new towers or redesigning device antennas to cope with mmWave or URLLC technologies’ demands. Gigabit LTE offers many of the benefits associated with 5G (e.g., high-speed data) without design challenges for businesses worldwide.  

Here are a few ideal use cases for Gigabit LTE: 

Remote Locations 

Businesses and agencies must often add network connectivity to sites and venues out of the existing infrastructure’s reach. Wired connections using copper or fiber can be extremely expensive and require long installation lead times. Deploying a cellular router to deliver Gigabit LTE broadband access to these sites is more cost-effective. In cases like natural disasters and pop-up events, it’s the only available option. 

Industrial Applications 

There are several industrial applications in which Gigabit LTE is crucial (e.g., security applications requiring high bandwidth). If a company needs to monitor remote locations with video cameras streaming 24/7, Gigabit LTE is the most reliable method.  

High-definition (HD) and ultrahigh-definition (UHD) cameras and those used in surveillance and industrial applications require high bandwidth on the uplink. However, not all Gigabit LTE modules will deliver the full specification. Gigabit LTE modules must implement two radio chains on the uplink side to provide interband carrier aggregation. Otherwise, the device will only benefit from half the network’s capacity. 

Branch Offices or New Stores 

Gigabit LTE provides an inexpensive, efficient solution for companies that must set up internet connections at branch offices or temporary stores. It requires minimal setup: The operator switches on an LTE router and provides connectivity in minutes. 

Failover Access to Reduce Downtime 

Even if an office maintains a wired connection to the internet and head office, Gigabit LTE can be a backup system. Downtime can be expensive, costing a small business about $423 per minute and large companies around $9,000 per minute. A Gigabit LTE backup system costs very little by comparison and provides insurance against such losses. 

As we await denser coverage of 5G, Gigabit LTE offers an accessible and efficient solution today. 

Speak with our IoT experts today to request a project review or developer kit. 

Request a Developer Kit

Editor’s Note: This blog was originally published on 29 April 2020 and has since been updated.

参考译文
千兆LTE与5G有何不同?
5G备受关注,因为它已经成为消费者的筹码。千兆LTE (Gigabit LTE)技术是在我们的智能手机上引入无暂停流媒体视频的4G技术,它是不太为人所知的前身。它是4G LTE的演进,可以以超过有线宽带的速度提供可靠的移动宽带接入。随着运营商以极快的速度推出5G,覆盖范围正在迅速提高。然而,千兆LTE仍然可以在全球范围内使用。5G是一项具有新型无线电波形和新型调制解调器的最新技术。因此,在一段时间内,5G的价格将高于4G产品。由于设备中的所有新功能,新的5G芯片组的成本将包括价格溢价。另一方面,4G设备的价格将会下降,因为它们通过大规模部署实现了规模经济。随着第四代移动通信标准(4G)的出现,数据传输得到了更大的关注。之前的蜂窝标准(2G和3G)集中在语音和文本功能上,迎合了智能手机出现之前的消费者。对于智能手机和 移动宽带 通信,LTE-Advanced (LTE-A)标准于2011年获得批准(3GPP Release 10)。它提供了1 Gbps的峰值下载数据速率。LTE- advanced Pro (LTE- a Pro)增强了千兆LTE功能。3GPP大约在2015年批准了该标准,Release (Rel) 13。LTE-A Pro在4G技术上更进一步。它提供了3 Gbps范围内的峰值下载速度,这取决于网络 高载波聚合 (在LTE-A Pro中最多允许32个20 mhz载波)的可用性。关键的5G技术和战略使LTE-A Pro能够证明这些超高速连接的稳健性和弹性。连接速度可以比有线宽带更快。移动网络运营商(MNOs)可以提供更快的数据传输速度。它们结合了无线电频谱的多个部分(称为“载波”)的数据承载能力来发送和接收数据。载波聚合将MNO中通常不连续的载波组合在一个或多个频谱波段内。它扩展了数据通道宽度和承载能力,以实现更高的容量和速度。千兆LTE需要5个或更多运营商聚合,才能将理论数据速率推向高于3 Gbps的峰值水平。随着5G占据更多的频谱份额,行业趋势最终将把所有设备都迁移到5G。然而,这需要十多年的时间才能实现。在那之前,LTE将填补中端设备的空白。有了3xCA, LTE设备将在许多宽带用例中获得不错的速度。此外,需要千兆位速度的高端设备最终将迁移到5G。为了增加数据传输无线电频谱容量,LAA将未许可的5 GHz频段与MNO的许可频谱结合使用。许可频谱被称为“清除频谱”。除被许可方外,没有人在许可的区域边界内使用该频谱。未经许可的频谱可以用于各种用途,比如Wi-Fi,它也可以在5 GHz频段内使用。LAA必须绕过这些其他用户,应用诸如Listen-Before-Talk (LBT)功能等技术来识别和利用未使用的通道。正交振幅调制(QAM)是一种有效的双域编码策略。它利用振幅和频率调制来编码无线电波形中的信息。QAM值越高,波形所能携带的信息就越多。在256-QAM之前,有64-QAM。当使用64- qam时,每个编码符号中可以包含6位信息,因此2^6等于64。在256- qam中,8位数据可以打包在同一个符号中,因此2^8等于256。256-QAM比特率比64-QAM比特率快30%。这种提高的数据速率意味着256-QAM比64-QAM需要更好的信噪比(SNR)。因此,当无线电接收良好并获得强信号时,它的性能可以比基于64-QAM的旧系统好30%。 多载波载波聚合可以获得更高的带宽,单频段多天线路径MIMO也同样如此。千兆LTE网络在基站和设备上分别标准化了四根天线。这些天线提高了频谱效率和数据速度,使设备能够连接到最稳定的可用信号。虽然千兆LTE和5G相似,但一些关键细节将它们区分开来。5G在6 GHz以下范围和超高毫米波(mmWave)频谱(高达40 GHz)的可用频率中增加了新的频段。除了3.5 GHz(也称为中频段)的少数频段外,4G大多部署在较低的频率(最高2.5 GHz)。此外,4G频谱的最大带宽被限制在20 MHz。这意味着每个4G运营商的容量被限制在20mhz。另一方面,5G定义了100 MHz宽的新频谱。我们可以想象,几家运营商如何在5G网络中实现高速。由于宽带丰富的毫米波单元覆盖面积小,因此密集的浓度是实现目标用户体验水平所必需的。5G体验与千兆级LTE明显不同,需要建设新的基础设施,这需要时间。另一个区别是5G网络可以在两种模式下工作:独立(SA)或非独立(NSA)。SA表示系统运行于所有5G无线和核心网。NSA将LTE和5G资源以不同模式组合使用。随着2020年3GPP Rel 16的发布,5G成为关键工业流程中有线网络的可靠替代方案。这些过程由各种基于电线和光纤的时间敏感网络(TSN)主导。Rel 16的超可靠低延迟通信(URLLC)功能指定链路可靠性优于99.9999%,延迟在毫秒范围内。千兆LTE的广泛可用性和连接成本的下降提供了更容易采用的优势。与5G不同,它不需要建造新的发射塔或重新设计设备天线来应对毫米波或URLLC技术的需求。千兆LTE 为全球企业提供了许多与5G相关的好处(例如,高速数据),而没有设计上的挑战。以下是千兆LTE的一些理想用例:企业和机构必须经常将网络连接添加到现有基础设施覆盖不到的站点和场所。使用铜或光纤的有线连接可能非常昂贵,并且需要很长的安装周期。部署蜂窝路由器为这些站点提供千兆LTE宽带接入更具成本效益。在自然灾害和弹出事件等情况下,这是唯一可用的选择。千兆级LTE在一些工业应用中至关重要(例如,需要高带宽的安全应用)。如果公司需要全天候监控远程位置,千兆LTE是最可靠的方法。高清(HD)、超高清(UHD)摄像机以及用于监控和工业应用的摄像机对上行链路的带宽要求较高。然而,并不是所有的千兆LTE模块都能提供完整的规格。千兆LTE模块必须在上行链路端实现两条无线电链,以提供带间载波聚合。否则,设备只能从网络容量的一半中获益。千兆LTE为必须在分支机构或临时商店建立互联网连接的公司提供了一种廉价、高效的解决方案。它只需要极少的设置:运营商只需打开LTE路由器,几分钟就能提供连接。即使办公室与互联网和总公司保持有线连接,千兆LTE也可以作为备份系统。停机时间可能很昂贵,小企业每分钟花费约423美元,大公司每分钟花费约9000美元。相比之下,千兆LTE备份系统的成本非常低,并为此类损失提供保险。 当我们等待5G更密集的覆盖时,千兆LTE今天提供了一个方便和高效的解决方案。今天与我们的物联网专家交谈,要求项目审查或开发工具包。编者按:本博客最初发布于2020年4月29日,此后一直在更新。
您觉得本篇内容如何
评分

相关产品

SnakeEye™.3-LTE 热电堆

减少制造过程中的废料。使用像光电池一样的热敏快速热敏开关来检测热敏物体的存在(如热熔胶、标签、激光雕刻、密封和压合部件)。

u-blox 优北罗 SARA-N310 LTE-M/NB-IoT

广泛的功能集支持众多新的物联网应用 超低功耗实现长达 10 年以上的电池寿命 使用 LwM2M 通过 uFOTA 提供重要固件更新 轻松在 u‑blox LTE-M 和 2G 模块之间迁移 符合 ISO

罗森伯格 LTE2600 2600MHz 互调分析仪

罗森伯格LTE2600互调仪2600MHz频段分析仪 LTE FDD2600网络(200万用户,20000个站点) 同频20+20MHz CA网络(2012.10)

Kanaltemperaturfühler mit Flansch

Einsatzgebiete sind die Heizungs-, Lüftung-, Kälte- und Klimatechnik.

稳控科技 LoRA网关转4G中继器DLS11无线采集仪工程防护电池程控数字 数据传输设备

DLS11 是为 VSxxx 系列采发仪研发的内置电池以及 LoRA、LTE(4G)无线的低功耗数据转发器。利用“实时在线”的 LoRA 收发器收集其它 LoRA 设备发送的数据并存储,定时启动将这些 存储的数据重新打包为标准的数据包经由 LTE 网络发送致远端服务器,数据发送方式有短信、TCP、邮件、FTP

安捷伦 E6607C EXT 多端口无线通信测试仪 热电偶延长线

具有高达 6 GHz 的频率范围和 160 MHz 带宽 每个 TRX 配有 2 个全双工和 2 个半双工端口 可定制,通过多端口适配器(MPA)技术连接多达 32 个被测件 测试多制式器件 蜂窝通信:LTE-Advanced、LTE FDD、LTE TDD、HSPA+、W-CDMA、1xEV-DO、cdma2000®、GSM/EDGE-Evo 和 TD-SCDMA 连通性:802.11ac、802.11a/b/g/

罗德与施瓦茨 CMW500 综合测试仪

cmw500 R&S无线综测仪cmw500 主要特点: 多技术解决方案:GSM/GPRS/EDGE/EDGEevo/WCDMA/HSPA/WiMAX/CDMA2000/1xEV-DO/TD-SCDMA/LTE

评论

您需要登录才可以回复|注册

提交评论

提取码
复制提取码
点击跳转至百度网盘