解读VR应用中的传感器数据融合技术

2020-02-28
关注
摘要 本文以强大传感器数据融合技术为示例,例如基于在标准使用期间获得的陀螺仪信号,对估算磁力计偏移加以利用,及其对用户相关特征(例如行人和头部跟踪)的影响。

  在虚拟现实中,用户都期望并要求这些设备始终按照指令运行,并平稳、准确地适应不断变化的周围环境。这需要精确的感测俯仰、滚转和航向方向,而这些则是通过从设备内置的加速度计、陀螺仪磁力计收集的数据融合实现的。

  通常在现实世界中,事物永远不会像其看起来那么简单,例如,准确确定航向(观测)方向便是一项巨大挑战,因为磁力计测量受到附近多个物体的负面影响。这些干扰性磁场影响,通常称为硬铁和软铁扭曲,可能由位于设备本身内的各种元件和用户周围环境中的外部磁性物体引起。

  本文以强大传感器数据融合技术为示例,例如基于在标准使用期间获得的陀螺仪信号,对估算磁力计偏移加以利用,及其对用户相关特征(例如行人和头部跟踪)的影响。

  一、磁力干扰挑战

  在实验室外,所谓的地球恒定磁场的刚性磁线不断被各种物体修改,如门框、桌子、椅子和其他金属物品。基于其特定磁特性,这些物体通过称为硬铁和软铁扭曲的现象改变其周围的磁场。


罗盘误差的来源:外部磁场

  诸如NdFeB、AlNiCo等硬磁材料(“硬铁”)引起高残余B场或“磁记忆”,而软磁材料(“软铁”)则通常是诸如铁(Fe)、镍(Ni)等材料及其合金。

  当磁力计用于设备中时,硬铁扭曲由产生磁场的物体造成,例如扬声器内的磁铁,由此导致传感器输出中称为“恒定偏移”的偏差,然后需要对其进行补偿。另一方面,软铁扭曲则是由“被动”影响或扭曲其周围磁场但自身不一定产生磁场的物体造成的,例如存储卡插槽、电池、无线天线、门窗框架和各种其他周围环境中的标准对象。这种类型的扭曲改变了磁球的实际形状,并且很大程度上取决于材料相对于传感器和磁场的定位。

  在典型的室内区域,由于一般物体引起的磁场扭曲,罗盘方向变化很大,即罗盘的红色“北”针指向各个方向。


典型室内区域传感器读数(磁力计)的变化

  因此,补偿硬铁和软铁扭曲对于获得有意义的磁力计读数至关重要。这种补偿需要在设备设计期间进行复杂的程序,并且在实际使用期间将结果结合到传感器的软件中。可用于补偿影响磁力计读数失真的方法包括:

  ①使用软铁矩阵在设计阶段进行补偿:

  使用软铁矩阵进行补偿后,传感器的读数具有明显更高的精度,与未补偿读数相比达±2°,其中误差范围可以轻松达到±10°。校准通过3D线圈系统(亥姆霍兹线圈)进行,该线圈系统由在同一轴上对中的两个螺线管电磁铁组成,可抵消这些干扰性外部磁场,以提供“清洁”的磁环境。

  带有惯性传感器的设备被放置在此清洁环境中,并接受测量,以创建磁力计的原始数据记录,然后将其输入数据驱动工具,生成SIC矩阵。之后,该SIC矩阵将合并至软件驱动器中,并永久补偿影响磁力计数据的设备内软铁扭曲。

  ②通过标准“八字形动作”在使用中校准软件

  此方法只需通过在已知的磁性清洁环境中移动设备(例如智能手机)便可收集大量有价值的数据。理想的动作是指沿最大定位范围测量磁性的运动,由此帮助估算所有情况下的磁偏差。因此,该技术通常使用覆盖所有三个轴向的八字形运动来执行。


  相当多的智能手机设备和操作系统制造商仍然依赖于这种八字形校准技术。但是,通过在3D空间中移动设备来创建此模式可能需要10秒以上,当用户在游戏中进行较为紧急的任务时,暂停游戏会让玩家十分扫兴。

  ③通过“自然使用动作”智能校准软件?

  尽管八字形动作非常适合智能手机,但在物理上也许并不可行,并且可能对其他类型的设备来说,执行起来会比较困难或奇怪,例如腕部可穿戴设备和增强/虚拟现实耳机等。

  磁力计校准背后的基本理念在于通过估算磁球与地球磁场矢量的偏差作为半径来估算磁力计的偏移。为了降低校准所需的时间并以更小、更自然的运动校准设备,可使用陀螺仪信号辅助磁场传感器的校准。

  校正后的陀螺仪信号相对于最后磁场值定义其旋转。一旦确定了新的磁场值,便会将其馈入扩展卡尔曼滤波器(EKF)。EKF估计磁力计偏移和磁场矢量的大小(半径)。磁强计干扰检测基于卡尔曼滤波器的残差。

  由于这些快速传统型磁力计校准器利用陀螺仪数据,因此在重新校准过程中被校准的设备必须处于静止状态,即陀螺仪本身在校准期间不会漂移。然而,对于较新的“体戴式”装置而言,这并不可行,因为这些时刻、并且是在较长的时间段内处于使用和运动中。

  二、数据整合技术在VR中的应用

  (1)、虚拟和增强现实耳机

  现实中无法要求虚拟现实耳机的用户经常以八字形运动移动其头部,尤其是佩戴耳机时。特别是对于耳机,由于大脑会记录用户实际运动和在屏幕上看到的视觉图像之间的对准偏差,即使相对较小的航向和水平倾斜偏差也可能导致非常不愉快的眩晕症状。

  Bosch Sensortec的耳机磁力计校准器校准磁力计,同时用户可自然地将头部绕颈部轴线移动。校准的积极效果已明显地在头部跟踪算法和多个AR/VR子使用案例中的关键性能定位结果中得到证明。


  AR/VR耳机——带磁力计校准的动态运动

  (2)、游戏控制板,VR/TV遥控器

  随着定向传感器渗透到越来越多的电视遥控器中,以及VR遥控器和游戏控制板向应用程序开发者提供越来越复杂的服务,收集准确可靠的航向数据并使真北与内容显示设备彼此协调变得至关重要。这一问题尤其体现在,当用户手持控制装置时,尽管他们的手静止,但依然看到光标在前进中漂移,或光标朝着与其实际手部动作不同的方向移动。

  同样,Bosch Sensortec的磁力计校准器考虑到遥控器或游戏控制板的自然运动,并大大减少了航向偏差,如下面的实际数据所示。


  游戏控制板/VR遥控精度与磁力计校准

  结语:

  3D线圈和数据驱动工具的组合可用于创建和利用SIC矩阵,此外,通过借助用户界面通知用户进行八字形动作,和集成自然使用型快速磁力计校准器软件,九轴传感器数据融合的可靠性如今获得大幅提升。这一点非常重要,因为磁力计精度和传感器数据融合是智能手机、可穿戴设备、AR/VR耳机和控制单元,甚至机器人真空吸尘器等各种设备的重要组成部分。

  此外,使用中校准以及智能校准技术通过降低现代环境中普遍存在的硬铁扭曲,大大提高了航向精度。

  本文参考自Kaustubh Gandhi,Bosch Sensortec软件产品经理与Bosch Sensortec传感器数据融合软件系统工程师Amithash Kankanallu Jagadish的合着。


  • 传感器
  • vr
  • 数据融合
  • 磁力
  • 磁力计
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

传感器大佬

比易烊千玺帅一点点的传感器从业者。

关注

点击进入下一篇

SITRI揭秘iPhone X手机中的3D人脸识别传感器

提取码
复制提取码
点击跳转至百度网盘