【科普】一文读懂CMOS图像传感器

2022-04-24
关注

点击下方卡片,关注“新机器视觉”公众号

重磅干货,第一时间送达

1873年,科学家约瑟·美(Joseph May)及伟洛比·史密夫(WilloughbySmith)就发现了硒元素结晶体感光后能产生电流,由此,电子影像发展开始,随着技术演进,图像传感器性能逐步提升。

1.20世纪50年代——光学倍增管(Photo Multiplier Tube,简称PMT)出现。

2.1965年-1970年,IBM、Fairchild等企业开发光电以及双极二极管阵列。

3.1970年,CCD图像传感器在Bell实验室发明,依靠其高量子效率、高灵敏度、低暗电流、高一致性、低噪音等性能,成为图像传感器市场的主导。

4.90年代末,步入CMOS时代。


图像传感器的历史沿革——PMT

1.光电倍增管(简称光电倍增管或PMT),真空光电管的一种。工作原理是:由光电效应引起,在PMT入射窗处撞击光电阴极的光子产生电子,然后由高压场加速,并在二次加工过程中在倍增电极链中倍增发射。

2.光电倍增管是一种极其灵敏的光检测器,可探测电磁波谱紫外,可见和近红外范围内光源,提供与光强度成比例的电流输出,广泛应用于验血,医学成像,电影胶片扫描(电视电影),雷达干扰和高端图像扫描仪鼓扫描仪中。

图像传感器的历史沿革——CCD
1.数字成像始于1969年,由Willard Boyle和George E. Smith于AT&T贝尔实验室发明。

2.最初致力于内存→“充电'气泡'设备”,可以被用作移位寄存器和区域成像设备。

3.CCD是电子设备,CCD在硅芯片(IC)中进行光信号与电信号之间的转换,从而实现数字化,并存储 为计算机上的图像文件。

4.2009年, Willard Boyle和George E. Smith获得诺贝尔物理学奖。


国际空间站使用CCD相机
1.1997年,卡西尼国际空间站使用CCD相机(广角和窄角)

2.美国宇航局局长丹尼尔戈尔丁称赞CCD相机“更快,更好,更便宜”;声称在未来的航天器上减少质量,功率,成本,都需要小型化相机。而电子集成便是小型化的良好途径,而基于MOS的图像传感器便拥有无源像素和有源像素(3T)的配置。


图像传感器的历史沿革——CMOS图像传感器
1.CMOS图像传感器使得“芯片相机”成为可能,相机小型化趋势明显。

2.2007年,Siimpel AF相机模型的出现标志着相机小型化重大突破。

3.芯片相机的崛起为多个领域(车载,军工航天、医疗、工业制造、移动摄影、安防)等领域的技术创新提供了新机遇。


CMOS图像传感器走向商业化
1.1995年2月,Photobit公司成立,将CMOS图像传感器技术实现商业化。

2.1995-2001年间,Photobit增长到约135人,主要包括:私营企业自筹资金的定制设计合同、SBIR计划的重要支持(NASA/DoD)、战略业务合作伙伴的投资,这期间共提交了100多项新专利申请。

3.CMOS图像传感器经商业化后,发展迅猛,应用前景广阔,逐步取代CCD成为新潮流。


CMOS图像传感器的广泛应用
2001年11月,Photobit被美光科技公司收购并获得许可回归加州理工学院。与此同时,到2001年,已有数十家竞争对手崭露头角,例如Toshiba,STMicro,Omnivision,CMOS图像传感器业务部分归功于早期的努力促进技术成果转化。后来,索尼和三星分别成为了现在全球市场排名第一,第二。后来,Micron剥离了Aptina,Aptina被ON Semi收购,目前排名第4。CMOS传感器逐渐成为摄影领域主流,并广泛应用于多种场合。


CMOS图像传感器发展历程
70年代:Fairchild
80年代:Hitachi
80年代初期:Sony
1971年:发明FDA&CDS技术
80年中叶:在消费市场上实现重大突破;
1990年:NHK/Olympus,放大MOS成像仪(AMI),即CIS
1993年:JPL,CMOS有源像素传感器,
1998年:单芯片相机,2005年后:CMOS图像传感器成为主流。


CMOS图像传感器技术简介


CMOS图像传感器
CMOS图像传感器(CIS)是模拟电路和数字电路的集成。主要由四个组件构成:微透镜、彩色滤光片 (CF)、光电二极管(PD)、像素设计。


1.微透镜:具有球形表面和网状透镜;光通过微透镜时,CIS的非活性部分负责将光收集起来并将其聚焦到彩色滤光片。

2.彩色滤光片(CF):拆分反射光中的红、绿、蓝 (RGB)成分,并通过感光元件形成拜尔阵列滤镜。

3.光电二极管(PD):作为光电转换器件,捕捉光并转换成电流;一般采用PIN二极管或PN结器件制成。

4.像素设计:通过CIS上装配的有源像素传感器(APS)实现。APS常由3至6个晶体管构成,可从大型电容阵列中获得或缓冲像素,并在像素内部将光电流转换成电压,具有较完美的灵敏度水平和的噪声指标。

Bayer阵列滤镜与像素
1.感光元件上的每个方块代表一个像素块,上方附着着一层彩色滤光片(CF),CF拆分完反射光中的RGB成分后,通过感光元件形成拜尔阵列滤镜。经典的Bayer阵列是以2x2共四格分散RGB的方式成像,Quad Bayer阵列扩大到了4x4,并且以2x2的方式将RGB相邻排列。

2.像素,即亮光或暗光条件下的像素点数量,是数码显示的基本单位,其实质是一个抽象的取样,我们用彩色方块来表示。

3.图示像素用R(红)G(绿)B(蓝)三原色填充,每个小像素块的长度指的是像素尺寸,图示尺寸为0.8μm。

Bayer阵列滤镜与像素
滤镜上每个小方块与感光元件的像素块对应,也就是在每个像素前覆盖了一个特定的颜色滤镜。比如红色滤镜块,只允许红色光线投到感光元件上,那么对应的这个像素块就只反映红色光线的信息。随后还需要后期色彩还原去猜色,最后形成一张完整的彩色照片。感光元件→Bayer滤镜→色彩还原,这一整套流程,就叫做Bayer阵列。


前照式(FSI)与背照式(BSI)
早期的CIS采用的是前面照度技术FSI(FRONT-SIDE ILLUMINATED),拜尔阵列滤镜与光电二极管(PD)间夹杂着金属(铝,铜)区,大量金属连线的存在对进入传感器表面的光线存在较大的干扰,阻碍了相当一部分光线进入到下一层的光电二极管(PD),信噪比较低。技术改进后,在背面照度技术BSI(FRONT-SIDE ILLUMINATED)的结构下,金属(铝,铜)区转移到光电二极管(PD)的背面,意味着经拜尔阵列滤镜收集的光线不再众多金属连线阻挡,光线得以直接进入光电二极管;BSI不仅可大幅度提高信噪比,且可配合更复杂、更大规模电路来提升传感器读取速度。

CIS参数——帧率
帧率(Frame rate):以帧为单位的位图图像连续出现在显示器上的频率,即每秒能显示多少张图片。而想要实现高像素CIS的设计,很重要的一点就是Analog电路设计,像素上去了,没有匹配的高速读出和处理电路,便无办法以高帧率输出出来。

索尼早于2007年chuan'gan发布了首款Exmor传感器。Exmor传感器在每列像素下方布有独立的ADC模数转换器,这意味着在CIS芯片上即可完成模数转换,有效减少了噪声,大大提高了读取速度,也简化了PCB设计。

CMOS图像传感器的应用


CMOS图像传感器全球市场规模

2017年为CMOS图像传感器高增长点,同比增长达到20%。2018年,全球CIS市场规模155亿美元,预计2019年同比增长10%,达到170亿美元。

目前,CIS市场正处于稳定增长期,预计2024年市场逐渐饱和,市场规模达到240亿美元。

CIS应用——车载领域
1.车载领域的CIS应用包括:后视摄像(RVC),全方位视图系统(SVS),摄像机监控系统(CMS),FV/MV,DMS/IMS系统。
2.汽车图像传感器全球销量呈逐年增长趋势。

3.后视摄像(RVC)是销量主力军,呈稳定增长趋势,2016年全球销量为5100万台,2018年为6000万台,2019年达到6500万台,2020年超过7000万台。

4.FV/MV全球销量增长迅速,2016年为1000万台,2018年为3000万台,此后,预计FV/MV将依旧保持迅速增长趋势,019年销量4000万台,2021达7500万台,直逼RVC全球销量。

车载领域——HDR技术方法
1.HDR解决方案,即高动态范围成像,是用来实现比普通数位图像技术更大曝光动态范围。

2.时间复用。相同的像素阵列通过使用多个卷帘(交错HDR)来描绘多个边框。好处:HDR方案是与传统传感 器兼容的最简单的像素技术。缺点:不同时间发生的捕获导致产生运动伪影。

3.空间复用。单个像素阵列帧被分解为多个,通过不同的方法捕获:1.像素或行级别的独立曝光控制。优点:单帧中的运动伪影比交错的运动伪影少。缺点:分辨率损失,且运动伪影仍然存在边缘。2.每个像素共用同一微透镜的多个光电二极管。优点:在单个多捕获帧中没有运动伪影;缺点:从等效像素区域降低灵敏度。

4.非常大的全井产能。

本文仅做学术分享,如有侵权,请联系删文。

—THE END—

您觉得本篇内容如何
评分

相关产品

Photonis / Exosens Lynx Low Light CMOS Sensor CMOS图像传感器

LYNX CMOS图像传感器是一个1.3MP的传感器,具有完全的SXGA 1280 x 1024分辨率,旨在在微光条件下提供出色的性能。LYNX CMOS传感器可提供高达100帧/秒(fps)的帧速率,具有

Sharp Microelectronics 夏普 CMOS Image Sensors CMOS图像传感器

高分辨率。高速。低功率。这是您下一个相机模块产品解决方案的制胜法宝。从包括4K2K、HD、全高清和HDR模式的解决方案中选择。请查看下面我们的产品系列,了解各种光学格式和功能,以满足您的程序的确切需要。,需要为您的下一个大批量汽车或消费电子产品设计定制解决方案吗?有关详细信息,请访问我们的定制相机解决方案页面。

CMOSIS 新视觉 CMV20000 CMOS图像传感器

CMv2000是一种高灵敏度流水线全球快门式CMOS图像传感器,分辨率为5120×3840像素。流水线意味着在读出过程中可以进行曝光。当外部曝光触发仍然可能时,内部定时发生器产生图像传感器读出和曝光所需的信号。cmv2000是从一个定制的CMOS图像传感器派生出来的。此传感器不用于交通应用。

Seeed 114992563 CMOS图像传感器

DEPTHEYE WIDE - H100 X V75 VGA T

Toshiba America (TAI) 东芝 Linear Image Sensor CMOS图像传感器

线性图像传感器是一种固态设备,它以逐行的方式将光学图像转换为模拟信号。有两种类型的线性图像传感器具有不同的电路结构:CMOS图像传感器和CCD图像传感器。线性图像传感器适用于复印机扫描组件、图像扫描仪、条形码阅读器和银行终端中的钞票识别系统等应用。东芝长期以来一直是用于扫描应用的线性图像传感器领域的行业领导者,为主要市场领域提供多种产品。东芝将扩大用于传感应用的图像传感器产品组合,并专注于开发适用于广泛应用的技术和产品。

ON Semiconductor 安森美 AS0260CSSC28SUKA0-CR CMOS图像传感器

安森美半导体主流级CMOS图像传感器提供各种性能、尺寸、功率和分辨率选项,可满足物联网生态系统和使用模型的要求。CMOS图像传感器采用先进的CMOS制造工艺,可实现出色的成像。其中包括用于人眼查看的鲜艳彩色图像、用于机器视觉的详细单色图像以及轻工业用途。该主流级图像传感器具有VGA至18MP分辨率、30fps至120fps帧速率以及1.1µm至6µm像素尺寸。典型应用包括智能照明、联网门铃、家用电器、机器人和2D扫描器。

Enlitech 胜焱电子 SG-A _ CMOS 图像传感器测试仪 视觉传感器

SG-A 系统是世界上第一个商用 CMOS 图像传感器测试仪。SG-A 可以提供最全面的 CMOS 图像传感器参数表征,如全光谱量子效率 QE、整体系统增益 K、时间性暗噪声、信噪比、绝对灵敏度阈值、饱和容量、动态范围、DSNU、PRNU、线性误差和首席射线角 CRA被测设备可以是几种类型的 CMOS 图像传感器模块。检验程序符合 EMVA 1288 标准。因此,SG-A CMOS 图像传感器测试仪可用于进行晶圆级光学检测、加工参数控制、微透镜设计、微透镜验证。SG-A CMOS 图像传感器测试仪的高度准直光束(

海伯森技术 HPS-HS系列 CMOS图像传感器

HPS-HS系列是一款高端高分辨率的黑白CMOS工业相机,包括线阵工业相机和面阵工业相机两种类型。产品采用业界顶级超高速图像传感器,具有大像元尺寸、低噪音、超高帧率、远距离传输等特点;万兆以太网光纤接口,满足工业视觉应用中对数据传输实时性和同步性的严苛要求;高集成化的设计,确保产品运行稳定,坚固耐用并保持优异的散热性能

RS Components 欧时 7141505 CMOS图像传感器

OmniVision的OV07740系列是高灵敏度VGA CMOS图像传感器。OV07740图像传感器专为笔记本电脑摄像头和网络摄像头而设计,从一个紧凑的封装中提供单芯片VGA摄像头的全部功能。它们采用Omnipexel3 HSâ„¢技术,可在极低的照明条件下提高图像采集性能,无需闪光灯。OV07740的VGA分辨率为60 fps,QVGA分辨率为120 fps,用户可以控制图像质量。OV07740还包括一次性可编程(OTP)存储器。适用于OV07740图像传感器的应用包括PC多媒体、安全、监控、玩具和游戏。 OV07740 CMOS图像的特性传感器:。图像大小=656 x 488像素系列=摄像头帧速率=60fps接口类型=DVP,SCCB安装类型=表面安装包装类型=CSP-3输入计数=32长度=4.19mm宽度=4.345mm最大工作电源电压=3.465

评论

您需要登录才可以回复|注册

提交评论

新机器视觉

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

车用CMOS图像传感器,火了!

提取码
复制提取码
点击跳转至百度网盘