How The Internet of Bodies Can Break Down Data Silos

2022-07-29
关注

Illustration: © IoT For All

The evolution of wearable devices is something to behold. In just over two years, the pandemic has given rise to an incredible and sustained spike in fitness trackers and smartwatches. This year, the wearables market will reach about 350 million shipments globally, logging a compound annual growth rate of 13 percent. These devices – commonly referred to as part of the Internet of Bodies – track our every movement and health metric. As a result, people are attaining newfound insight into their blood pressure, heart rate, sleeping pattern, and more.

'This year, the wearables market will reach about 350 million shipments globally, logging a compound annual growth rate of 13 percent.' -Carsten Rhod GregersenClick To Tweet

The medical potential for this information is clear. However, how hospitals and research clinics leverage this data isn’t. Currently, the vast majority of devices collect information but don’t share it, impeding any true application in medicine. Accessing this goldmine of medical information requires our industry to break down such data silos. Let’s find out how.

The Issue With Data Silos

Wearables, as the name implies, are electronic devices that people wear close to the skin to accurately relay medical, biological, and exercise data to a database. Thanks to popular devices like Apple Watch and Fitbit, this rapidly growing segment has made the Internet of Things (IoT) industry the nearly-trillion-dollar behemoth it is today. The problem with such a lucrative market, however, is that most players are unwilling to share their data. These private companies view the recorded information as private data. The result is medical treasure troves that are unavailable to doctors.

Of course, companies have a duty of care with sensitive user data, but the current approach impedes medical researchers and practitioners from adequately implementing this rich information into their work. The cost opportunity is massive. If leveraged correctly, wearables could grant clinicians a more comprehensive, longitudinal view of patient health. This is particularly true when data collected by wearables, or the internet of bodies, can help to detect potential illnesses or diseases, such as sleep apnea, cardiac disease, or mental illness. For the moment, however, the problem is only predicted to worsen.

How To Break Down Data Silos

The good news is that it’s possible to break down data silos in wearables. Even better, there are multiple ways to do so. First, the internet of bodies device creators can agree on industry standards to safely share data. This approach would see wearable companies work together to adopt common standards and create new protocols. This will take time and coordination, but it’s doable. In the 1990s, five of the world’s biggest telecom providers established an interest group for a new communications protocol, Bluetooth. Today, nearly all laptops and tablets accept the standard.

Second, medical researchers can construct data lakes to extract actionable outcomes from large information sets. This approach is one way to get around the issue of inconsistent data standards in the industry. Currently, ingesting such data from multiple sources and converting it to a consistent format (for analysis by machine learning training and inferencing) is challenging. However, researchers should look to employ data lake patterns to store information and then build layers to modify the data to a format for use across different systems.

Third, in the case of specific clinical research trials and internal hospital operations, IoT ecosystems work to share information across a unified network. This method creates a single platform to connect the dots and achieve unified device connectivity. This way, the platform operators can have direct access to data and make decisions accordingly, all the way from monitoring patient vitals to managing hospital inventory.

A Brave New World for Interoperability

There’s no easy solution to breaking down data silos – but the opportunity is too great to miss. Unlocking this data could be instrumental to providing value-based care, reducing costs, lowering errors, and improving outcomes. Moreover, the problem is only projected to grow with time. IDC projects the total universe of healthcare data to grow approximately 400% between 2020 and 2025.

We must act now. With growing data comes the potential for better predictive diagnoses, individualized therapies, and new efficiencies that can increase access to care while controlling costs. Achieving this, however, requires vendors to come to the table and break down the data silos they have helped create.

Tweet

Share

Share

Email

  • Remote Management
  • Wearables
  • Data Analytics
  • Fitness
  • Health and Wellness

  • Remote Management
  • Wearables
  • Data Analytics
  • Fitness
  • Health and Wellness

参考译文
实体互联网如何打破数据孤岛
可穿戴设备的发展值得期待。在短短两年多的时间里,新冠肺炎疫情让健身追踪器和智能手表的销量出现了惊人的持续增长。今年,可穿戴设备市场的全球出货量将达到3.5亿部左右,复合年增长率为13%。这些设备——通常被称为身体互联网的一部分——跟踪我们的每一个动作和健康指标。因此,人们对自己的血压、心率、睡眠模式等都有了新的认识。这一信息在医学上的潜力是显而易见的。然而,医院和研究诊所如何利用这些数据却不是。目前,绝大多数设备收集信息,但不共享,阻碍了任何真正的医学应用。要访问这个医疗信息的金矿,我们的行业需要打破这种数据孤岛。让我们看看是怎么做到的。可穿戴设备,顾名思义,是人们戴在皮肤上的电子设备,可以准确地将医疗、生物和运动数据传输到数据库。得益于苹果手表(Apple Watch)和Fitbit等流行设备,这一快速增长的领域让物联网(IoT)行业成为了如今市值近万亿美元的庞然大物。然而,这个利润丰厚的市场的问题在于,大多数玩家不愿意分享他们的数据。这些私人公司将记录的信息视为私人数据。其结果是医生无法获得的医学宝藏。当然,公司有责任注意敏感的用户数据,但目前的方法阻碍了医学研究人员和从业人员充分地将这些丰富的信息应用到他们的工作中。成本机会是巨大的。如果运用得当,可穿戴设备可以让临床医生更全面、更纵向地了解患者的健康状况。当可穿戴设备或身体网络收集的数据可以帮助检测潜在的疾病时,这一点尤其正确,比如睡眠呼吸暂停、心脏病或精神疾病。然而,就目前而言,预计问题只会恶化。好消息是,在可穿戴设备中打破数据竖井是可能的。更好的是,有多种方法可以做到这一点。首先,身体互联网设备的创造者可以就安全共享数据的行业标准达成一致。这种方法将促使可穿戴设备公司合作采用共同的标准并创建新的协议。这需要时间和协调,但它是可行的。上世纪90年代,世界上最大的五家电信供应商成立了一个兴趣小组,讨论一种新的通信协议——蓝牙。如今,几乎所有的笔记本电脑和平板电脑都接受了这一标准。第二,医学研究人员可以构建数据湖,从大量信息集中提取可操作的结果。这种方法是解决行业中数据标准不一致问题的一种方法。目前,从多个来源摄取此类数据并将其转换为一致的格式(用于机器学习训练和推理分析)是具有挑战性的。然而,研究人员应该考虑使用数据湖模式来存储信息,然后构建层来修改数据,使其以一种格式在不同的系统中使用。第三,在特定临床研究试验和医院内部运营的情况下,物联网生态系统可以在统一的网络上共享信息。这种方法创建了一个单一的平台来连接各个点,实现统一的设备连接。通过这种方式,平台运营商可以直接访问数据并做出相应的决策,从监测患者生命体征到管理医院库存。 打破数据孤岛没有简单的解决方案,但机会太大了,不能错过。解锁这些数据可能有助于提供基于价值的护理,降低成本,减少错误,改善结果。此外,预计这个问题只会随着时间的推移而加剧。IDC预计,在2020年至2025年期间,医疗保健数据的总量将增长约400%。我们必须马上行动。随着数据的增长,更好的预测诊断、个性化治疗和新的效率有可能增加护理的可及性,同时控制成本。然而,要实现这一点,就需要供应商来打破他们帮助创建的数据竖井。
  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C011EN RF 音频麦克风

C011型直通台式边界层话筒采用了非常坚固的外壳设计。它们自上而下由实心黄铜制成,确保在最极端环境下的可靠性。它们具有一个内置的幻影电源模块,该模块具有完全的射频保护,以防止在800兆赫-1.2兆赫频段工作的GSM设备的干扰。极性模式:全向频率响应:50赫兹-20千赫灵敏度:-42dB+\/-3dB@1千赫(0dB=1 V\/Pa)阻抗:200欧姆 S\/n比率:58dB最大SPL:120dB 1%THD电源要求:9-48伏幻像电源终端:外接3针XLR

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

Minco AH439S1N10EN 温湿度变送器

Minco空间湿度探测器组件具有温度补偿功能,结构紧凑,重量轻。它们是为直接安装在建筑内墙上而设计的。他们的特点是集成电路传感器与稳定的聚合物元件,是由烧结不锈钢过滤器封装,加上先进的微处理器,以提供准确和可重复的测量。温度输出是可选的。,用于需要:

评论

您需要登录才可以回复|注册

提交评论

iotforall

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

如何投资无人机行业:深入研究无人机ETF

提取码
复制提取码
点击跳转至百度网盘