Unlocking the value of artificial intelligence and machine learning

2022-10-06 01:50:03
关注

In an era of accelerated digitalisation, artificial intelligence (AI) and machine learning (ML) have fast become part of the IT infrastructure of many businesses. Consequently, how these technologies are being used to derive meaningful insights from vast quantities of data is maturing rapidly.

Artificial intelligence
Artificial intelligence and machine learning are at the heart of solving key business problems. (Photo by cono0430/Shutterstock)

“Early on, when organisations didn’t have access to the computing power and zettabytes of data that they have today, AI was only springing up in pockets,” says Vaidya JR, SVP and global head of data and AI at IT transformation specialist Hexaware Technologies, “The approach then was to see what AI could do for a company, without truly identifying a well-defined problem. Data science solutions were just a shot in the dark.

“Organisations were struggling to put their data to effective use, which led to limited value generated and ineffectual business results,” he adds. “You can crunch any amount of data, and create numerous models; it only adds value if there is a significant impact on the business. But the current attitude has completely changed across industries, without exception.”

From being data-rich but insight-poor, businesses are putting vast amounts of data to work – sensor data, satellite imagery, web traffic, digital apps, video images, customer behaviour metrics and much more. They are in the process of automating and democratising AI and ML, but the attitude now is one of identifying business problems to solve before implementing these technologies. This marks a significant shift: AI and ML strategies are no longer driven by tech, but by strategic business objectives. 

Free White Paper

Using AI to Optimize IoT Data in Quality Control for a Global Heavy Vehicle Manufacturer

By Hexaware-Technologies

Enter your details to receive the free paper:

By downloading this whitepaper, you acknowledge that New Statesman Media Group may share your information with our white paper partners/sponsors who may contact you directly with information on their products and services.   Visit our privacy policy for more information about our services, how New Statesman Media Group may use, process and share your personal data, including information on your rights in respect of your personal data and how you can unsubscribe from future marketing communications.  Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address.  

Thank you. Please check your email to download the white paper.

“Enterprises are looking for use cases to drive business goals and produce results,” observes Vaidya. “AI has to derive efficiency gains at a reduced cost with actionable insights.

“Advanced analytics, AI and ML adoption have skyrocketed across organisations that are seeking to unlock value from data,” he adds. “The race has begun. Everybody is now thinking of democratising AI because they have humongous amounts of data, and it is not humanly possible to crunch all that data manually. So, automation and democratisation are a must.”

Data drives business

In the eyes of the Hexaware executive, this marks a wider corporate trend: in the age of digitalisation, all enterprises are becoming data companies. 

Today, automation features across the entire data value chain. The emergence of AI-driven analytics solutions has aided industries in creating greater business value. 

“The manufacturing industry, for instance, is fast emerging as completely data-driven,” remarks Vaidya. “We’re talking about digital twins, robots making robots, autonomous cars, and much more. The underlying aspect that is powering the entire possibility is data and AI.

“For example, when you have high rejection rates in your production unit, you need to deploy a parts failure prediction model,” he continues. “You must convert the business problem into a data science problem. What kind of data is required to iterate on the model and improve its accuracy and reliability? How should it be deployed in the real world? These are the areas where we step in and help our customers across industries figure things out.”

Even in professional services, Vaidya says, the linear models are long gone: “It is no longer about a consulting firm approaching the client, building a team, and delivering people-based solutions. Instead, they are turning towards self-service platforms. We’re looking at data platforms customers can subscribe to, that provide automation to the extent where customers only need to identify their problem and the necessary parameters, after which these self-service platforms process their requirements. This is applicable to numerous industries, like auditing, advisory, accounting, healthcare, insurance and more.”

“Data-driven customer experience is another area many of our customers are prioritising, using omni-channels for hyper-personalisation, and customising their journeys in real time,” he adds. “AI recommendation engines for personalisation are extensively used across industries to recommend a customer’s next purchase or next show to watch based on their past purchases or watch history.”

From the acquisition of data to the gleaning of insights, be it through embedding models or operationalising, automation is increasingly prevalent across the data value chain. Enterprises are increasingly turning to automated machine learning (AutoML). This process automates time-consuming, iterative tasks of ML model development, and also serves towards democratising machine learning. 

“In fact, AutoML will eventually reach a stage where if a business use case is given, it will identify options regarding how to convert that case into a typical data science problem, all the way up to operationalising AI,” predicts Vaidya.

Building ML models is only a part of the process. Operationalising them is where MLOps – a set of practices for reliably and efficiently deploying and maintaining ML models in production, transitioning the algorithms to production systems – comes into the picture. 

Artificial intelligence partnerships power

With AI strategy driven by the C-suite, rather than the IT department, third-party partners like Hexaware have a crucial role to play in helping customers deliver digital initiatives and build connected customer-centric digital enterprises.

“From our experience, digital enterprises are characterised by certain factors – hyper-personalisation, connected enterprises, customer-centric and advanced production methods,” says Vaidya. “We understand the transformations being witnessed in the market, compare their peers in the industry and then engage with our clients to co-create value. We also help organisations understand how transforming the digital helps transform the physical. Edge computing, PaaS, servitisation, IoT and IIoT – in the B2B segment – are only a few of the technologies that help make that connection.

“Where we step in is at the conversion stage. We help build digital enterprises, by converging technologies and deriving the best from them. This includes creating a data architecture roadmap, an AI Center of Excellence (CoE) roadmap, change management and guiding enterprises on how their consultants can be reskilled. We create and build a minimum viable product quickly that they can test through the entire value chain.”

Vaidya acknowledges that change is happening at an ever-increasing pace, but cautions that businesses must be careful not to rush. A foundation must first be set, instead of jumping on the AI bandwagon for the sake of it. “We start from scratch, preparing organisations for business change,” he explains. “Right from identifying the business challenge and use cases, to converting them into data science problems, to eventually building an agile data engineering organisation, which is a fundamental piece, since your model is only as good as the data it gets.” 

There are numerous adoption challenges that enterprises might face, right from excessive costs borne owing to inaccurate models, lack of skilled SMEs or even identifying the right data sets.

Ultimately, it boils down to understanding the business, defining the business challenge at hand, and converting it into a data science problem. This requires a team encompassing the right blend of skills, roles and responsibilities, coming together to create an ecosystem that generates value repeatedly and reliably.

Topics in this article: AI, Analytics, Hexaware Technologies, Machine Learning, sponsored

参考译文
解锁人工智能和机器学习的价值
在数字化加速的时代,人工智能(AI)和机器学习(ML)已迅速成为许多企业 IT 基础设施的一部分。因此,这些技术如何从海量数据中提取有意义的洞察,正迅速成熟。人工智能和机器学习在解决关键商业问题方面处于核心地位。(照片由 cono0430/Shutterstock 提供)IT 转型专家 Hexaware Technologies 的高级副总裁兼全球数据与 AI 主管 Vaidya JR 表示:“早些时候,当企业没有今天拥有的计算能力和泽字节(zettabytes)级数据时,AI 只在局部地区出现。那时候的做法是看看 AI 能为企业做些什么,而没有真正识别出一个明确的问题。数据科学解决方案不过是盲目的尝试。”他补充道:“企业难以有效利用数据,这导致了价值有限、效果不佳的商业成果。”“你可以处理任何数量的数据,建立无数模型,但只有对业务产生显著影响时,才有价值。但目前,各行各业的态度已经完全改变,无一例外。”从过去的数据丰富却洞察匮乏,企业如今正在充分利用大量数据——传感器数据、卫星图像、网络流量、数字应用、视频图像、客户行为指标等。他们正在推动和普及 AI 与 ML 的自动化和民主化,但目前的态度是:在实施这些技术之前,先识别出要解决的商业问题。这标志着一个重大转变:AI 和 ML 战略不再由技术驱动,而是由战略业务目标驱动。白皮书《使用 AI 优化全球重型车辆制造商质量控制中的 IoT 数据》由 Hexaware Technologies 提供。请输入您的详细信息以获取免费白皮书:国家 英国 美国 阿富汗 奥兰群岛 阿尔巴尼亚 阿尔及利亚 美属萨摩亚 安道尔 安哥拉 安圭拉 南极洲 安提瓜和巴布达 阿根廷 亚美尼亚 阿鲁巴 澳大利亚 奥地利 阿塞拜疆 巴哈马 巴林 孟加拉国 巴巴多斯 白俄罗斯 比利时 伯利兹 贝宁 百慕大 不丹 玻利维亚 波斯尼亚和黑塞哥维那 博茨瓦纳 布韦岛 巴西 英属印度洋领地 文莱达鲁萨兰国 保加利亚 布基纳法索 布隆迪 柬埔寨 喀麦隆 加拿大 佛得角 开曼群岛 中非共和国 乍得 智利 中国 圣诞岛 科科斯(基林)群岛 哥伦比亚 科摩罗 刚果 刚果民主共和国 科克群岛 哥斯达黎加 科特迪瓦 克罗地亚 古巴 塞浦路斯 捷克共和国 丹麦 吉布提 多米尼加 多米尼加共和国 厄瓜多尔 埃及 萨尔瓦多 赤道几内亚 厄立特里亚 爱沙尼亚 埃塞俄比亚 福克兰群岛(马尔维纳斯) 法罗群岛 斐济 法国 法属圭亚那 法属波利尼西亚 法属南部领地 加蓬 冈比亚 格鲁吉亚 德国 加纳 直布罗陀 格陵兰 格林纳达 瓜德罗普 关岛 危地马拉 根西岛 几内亚 几内亚比绍 圭亚那 海地 赫德岛和麦克唐纳群岛 圣座(梵蒂冈城国) 洪都拉斯 香港 匈牙利 冰岛 印度 印度尼西亚 伊朗,伊斯兰共和国 伊拉克 爱尔兰 马恩岛 以色列 意大利 牙买加 日本 泽西岛 约旦 哈萨克斯坦 肯尼亚 基里巴斯 朝鲜民主主义人民共和国 韩国 科威特 吉尔吉斯斯坦 老挝人民民主共和国 拉脱维亚 黎巴嫩 莱索托 利比里亚 利比亚阿拉伯贾马赫里亚 列支敦士登 立陶宛 卢森堡 澳门 马其顿,前南斯拉夫共和国 马达加斯加 马拉维 马来西亚 马尔代夫 马里 马耳他 马绍尔群岛 马丁尼克 毛里塔尼亚 毛里求斯 马约特 墨西哥 密克罗尼西亚联邦 摩尔多瓦共和国 摩纳哥 蒙古 黑山 蒙塞拉特 摩洛哥 莫桑比克 缅甸 纳米比亚 瑙鲁 尼泊尔 荷兰 荷属安的列斯 新喀里多尼亚 新西兰 尼加拉瓜 尼日尔 尼日利亚 纽埃 诺福克岛 北马里亚纳群岛 挪威 阿曼 巴基斯坦 帕劳 巴勒斯坦被占领土 巴拿马 巴布亚新几内亚 巴拉圭 秘鲁 菲律宾 皮特凯恩 波兰 葡萄牙 波多黎各 卡塔尔 留尼旺 罗马尼亚 俄罗斯联邦 卢旺达 圣赫勒拿岛 圣基茨和尼维斯 圣卢西亚 圣皮埃尔和密克隆 圣文森特和格林纳丁斯 萨摩亚 圣马力诺 圣多美和普林西比 沙特阿拉伯 塞内加尔 塞尔维亚 塞舌尔 塞拉利昂 新加坡 斯洛伐克 斯洛文尼亚 所罗门群岛 索马里 南非 南乔治亚和南桑威奇群岛 西班牙 斯里兰卡 苏丹 苏里南 斯瓦尔巴和扬马延 斯威士兰 瑞典 瑞士 阿拉伯叙利亚共和国 中国台湾省 塔吉克斯坦 坦桑尼亚联合共和国 泰国 东帝汶 多哥 托克劳 汤加 特立尼达和多巴哥 突尼斯 土耳其 土库曼斯坦 特克斯和凯科斯群岛 图瓦卢 乌干达 乌克兰 阿拉伯联合酋长国 美国海外小岛屿领土 乌拉圭 乌兹别克斯坦 瓦努阿图 委内瑞拉 越南 维尔京群岛,英国 维尔京群岛,美国 瓦利斯和富图纳 西撒哈拉 也门 赞比亚 津巴布韦 通过下载这份白皮书,您承认 New Statesman Media Group 可能会与我们的白皮书合作伙伴/赞助商共享您的信息,他们可能会直接联系您,提供他们产品和服务的相关信息。请访问我们的隐私政策,以了解有关我们服务的更多信息,包括 New Statesman Media Group 可能如何使用、处理和共享您的个人信息,包括您在个人信息方面的权利,以及如何取消未来营销通信的订阅。我们的服务面向企业订阅者,您保证所提交的电子邮件地址是您的公司电子邮件地址。下载免费白皮书。谢谢。请查看您的电子邮件以下载白皮书。Vaidya 观察指出:“企业正在寻找用例来推动业务目标并产生成果。”“AI 必须通过可操作的洞察力,在降低成本的同时提高效率。”他补充说:“在寻求从数据中释放价值的组织中,高级分析、AI 和 ML 的采用迅速增长。”“竞争已经开始了。如今,每个人都想推动 AI 民主化,因为他们拥有海量数据。我们在转化阶段介入,帮助建立数字企业,通过融合技术并从中受益。这包括创建数据架构路线图、AI 优秀中心(CoE)路线图、变革管理,以及指导企业如何重新培训他们的顾问。”Vaidya 承认变化正在以越来越快的速度发生,但他提醒企业必须谨慎,不要仓促行事。必须首先打下基础,而不是为了赶时髦就盲目跟进 AI。他解释说:“我们从零开始,准备组织进行业务变革。从识别业务挑战和用例,到将它们转化为数据科学问题,再到最终构建一个敏捷的数据工程组织,这是一块基础,因为你的模型只有在获得的数据质量高的情况下才会好。”企业在采用过程中可能会面临许多挑战,从因不准确模型而导致的高昂成本,到缺乏专业技能的人员,甚至识别合适的数据集。归根结底,关键在于理解业务,定义当前的业务挑战,并将其转化为数据科学问题。这需要一个拥有正确技能组合、角色和责任的团队,协同合作,构建一个能够持续可靠地创造价值的生态系统。本文主题:人工智能、分析、Hexaware Technologies、机器学习、赞助
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘