A Quick Guide For Doing Data Transformation The Right Way

2023-03-15 20:29:32
关注

A Quick Guide For Doing Data Transformation The Right Way
Illustration: © IoT For All

Our world has become increasingly data-driven. Organizations of all sizes are ingesting increasing amounts of data every day, and it is vital to take full advantage of it to unlock new possibilities.

However, the process of data transformation is not simple due to the vast amount of raw data. It might surprise you to learn that every day, approximately 2.5 quintillion bytes of data are generated worldwide. Another problem is that most of the raw data is irrelevant to your business.

What is Data Transformation?

Generally speaking, data transformation is a process by which raw data is transformed into a format that is optimized for your specific business objectives, therefore making it usable for your business.

The raw data of your business can give you a lot of insight into your business, customers, and your competitors which is necessary for businesses to make informed decisions. However, when data is presented in its raw form, it cannot be trusted. The data contained therein is both irrelevant and relevant at the same time. Also, there could be errors or missing values in the data. Duplicate data can be found sometimes.

During the data transformation process, raw data is extracted, cleaned, and transformed into a format that is suitable for integration, analysis, storage, and many other processes.

Data transformation can either be done manually or automatically using a data transformation tool and can change the format, structure, content, or context of the data to make it more useful.

“During the data transformation process, raw data is extracted, cleaned, and transformed into a format that is suitable for integration, analysis, storage, and many other processes.”

-Neeraj Agarwal

Why is Data Transformation Necessary for my Business?

Businesses need to transform data for two reasons: first, to turn it into useful information, and second, to turn it into actionable information.

Raw data does not provide much value. Raw data alone makes it difficult to make decisions or take action. A human or machine can make use of data when it is transformed into a format it can understand. During this process, algorithms and rules are applied to the data to derive insights and patterns that can be used.

According to Gartner research, companies have suffered losses totaling nearly $15 billion every year due to poor data quality. Data quality issues are bound to get worse for companies that have a large number of business divisions, and operations across a wide geographical region, as well as many employees, customers, suppliers, and products that need to be managed.

Business Cases That Require Data Transformation

For any business to succeed, data transformation must be carried out regardless of the size and sector in which they operate. However, we have outlined a few examples of applications for data transformation that can provide the greatest benefit to a business:

E-Commerce

E-commerce business produces a lot of data every day, and the success of the business greatly depends on how the business gathers valuable insights from it. Therefore the importance of data transformation is inevitable for eCommerce businesses.

Banking

The banking sector also greatly depends on the data. Starting from customer information to creating a personalized offer to customers, banks used to consume a vast amount of data. Data transformation can help banking institutes to generate valuable insights from the raw data.

Healthcare

Among all of the industries that are experiencing digital transformation, healthcare is at the forefront. Thousands of smart hospitals and medical facilities are incorporating artificial intelligence into how they identify possible illnesses and operate.

Financial

Financial institutions receive information about their customers from a variety of sources. This customer information can’t be utilized directly to bring business. Therefore data transformation is a must to convert the data from raw format to meaningful information.

How Will Data Transformation Benefit My Business?

A data analytics solution is not complete without a data transformation. Poor quality of data can not only be expensive, but it can also be useless. A business needs to be capable of extracting and transforming data into useful information so that it can remain agile and adaptable.

Below, we have outlined some of the benefits of data transformation services for your business.

Improved Data Quality

Several problems can arise as a result of bad data. When you transform your data, you can provide your organization with the opportunity to eliminate quality issues and reduce the possibility of misinterpretations to ensure your business runs smoothly.

Reducing Risks

When using inconsistent, discrepant data, you put your financial and reputational interests at risk. Standardizing and quality data are crucial to reducing these risks.

Having More Business Intelligence and Analytical Data Available

The majority of companies are not analyzing their data to gain business intelligence for their business.  Data transformation tools are highly effective in improving the accessibility of your company’s data, standardizing it, and using it in the context of intelligence.

Effective Data Management

When data is being integrated from a variety of sources, there is an increasing challenge in terms of metadata consistency. The transformation of data will assist you in improving your metadata as well as understanding the data set more accurately.

Data Visualization

Among the various steps that are involved in the data transformation process, data visualization is one of the most important. Analyzing data accurately and insightfully becomes easier when noise is reduced and the data structure is improved.

What are the Steps Involved in the Data Transformation Process?

Data Transformation
Algoscale Technologies

There are several steps involved in the data transformation process as mentioned below:

Data Discovery

To transform data, we must first identify and understand the information contained within the source files. Analysis of source data requires consideration of data quality, quality attributes, and the structure of the source data. Using this method, better data analysis can be done and valuable business intelligence can be generated.

Data Mapping

As part of this process, analysts define what criteria are needed to modify, match, filter, join, and aggregate individual fields within the set of data sources. Mapping involves extracting business value from multiple external and internal sources, unifying, and then transforming the data into an analytical and operational format.

Data Extraction

A step of the migration process involves the move of data from a source system to a target system. Data may be retrieved from either structured sources (e.g. databases) or unstructured sources (e.g. event streams, log files) of data.

Transform Data

This is the last step in the data transformation process. There are multiple sources of structured or unstructured data that are collected and converted into a format that can be used by businesses to efficiently manage their data.

Data Review

Once the data has been transformed, you will need to check the data again to ensure that the transformation has been accurate. The process of reviewing can be likened to the process of quality assurance.

What are the Different Data Transformation Methods?

There are several data transformation methods available to gain valuable insight from the data:

Manual Data Transformation

The next step involves writing a small piece of code manually to implement the transformation of the data.  R, Python, and SQL are a few of the most popular programming languages that can be used to perform manual data transformation.

Manual data transformation methods take time and effort to manually transform data. Additionally, the process requires significant amounts of time to manually code transforms, test transforms, and maintain transform codes.

Data Transformation With On-Site ETL Tools

ETL refers to the extraction, transformation, and load. It primarily involves extracting data from one or more sources, transforming it into a consistent format, and then loading it to the desired destination.

Data transformation can be very expensive when using on-premise ETL tools, and as a result, companies are now moving to cloud-based ETL methods to perform their data transformations.

Data Transformation With Cloud-Based ETL Tools

Another highly effective data transformation method is cloud-based ETL tools. With the help of these instruments, organizations can process large volumes of data from a variety of different sources in an efficient and timely manner.

The name implies that these tools work through the cloud servers, which means they are more cost-effective than on-premise ETL methods.

The Best Data Transformation Tools to Ease Your Journey

There are two types of data transformation tools available in the market to help your business dig deep into the data and extract valuable information from it.

Scripting Tools

These are the common types of data transformation tools that work using the programming languages such as SQL or Python. This type of transformation is usually performed within a repository and executed by a system that orchestrates all the transformations in order to complete them.

These tools require technical expertise in SQL and Python to make the most out of the business data.

Low/No-Code Tools

These are the easiest types of data transformation tools. With this tool, businesses can load data into the data warehouse from multiple sources using a simple and intuitive interface that makes managing data easy.

There is a great benefit to these tools, in that they don’t require any technical expertise to demonstrate their ability to generate valuable insights from the data.

Tweet

Share

Share

Email

  • Data Analytics
  • Big Data
  • Digital Transformation
  • Finance
  • Healthcare

  • Data Analytics
  • Big Data
  • Digital Transformation
  • Finance
  • Healthcare

参考译文
正确进行数据转换的快速指南
**插图:** © IoT For All 我们的世界正变得越来越以数据为中心。无论组织规模大小,每天都在接收越来越多的数据,要充分利用这些数据以解锁新的可能性是至关重要的。然而,由于原始数据量巨大,数据转换过程并不简单。你或许会惊讶地了解到,全球每天大约会产生2.5万亿兆字节的数据。另一个问题是,大多数原始数据与你的业务无关。 **什么是数据转换?** 一般来说,数据转换是一个将原始数据转换为适合你的特定业务目标的格式的过程,从而使数据对你的业务可用。你的企业数据可以为你提供大量关于你的企业、客户和竞争对手的信息,这在企业做出明智决策时是必不可少的。然而,当数据以原始形式呈现时,它无法被完全信任。其中的数据可能同时包含无关和相关的信息。此外,数据中可能还包含错误或缺失的值,有时还会出现重复数据。在数据转换过程中,原始数据将被提取、清洗,并转换为适合集成、分析、存储以及其他各种流程的格式。数据转换可以通过手动或使用数据转换工具自动完成,并可改变数据的格式、结构、内容或背景,使其更加有用。 “在数据转换过程中,原始数据被提取、清洗,并转换为适合集成、分析、存储及其他许多流程的格式。” ——尼拉·阿加瓦尔 **为什么数据转换对我的业务是必要的?** 企业需要转换数据有两个原因:第一,将其转化为有用的信息;第二,将其转化为可采取行动的信息。原始数据本身并不能提供太多价值。仅凭原始数据,很难做出决策或采取行动。当数据被转换为人类或机器可以理解的格式时,才能被有效利用。在此过程中,算法和规则被应用于数据,从而得出可用于分析的洞察和模式。根据Gartner的研究,由于数据质量差,企业每年大约要损失150亿美元。对于拥有大量业务部门、广泛地理分布、众多员工、客户、供应商和产品需要管理的企业来说,数据质量问题必然会变得更加严重。 **需要进行数据转换的商业案例** 无论企业规模大小或所处行业,数据转换都是实现成功所必需的。然而,我们列举了一些数据转换应用的例子,这些例子对企业的帮助最大: **电子商务** 电子商务业务每天都会产生大量数据,而企业的成功在很大程度上取决于如何从这些数据中提取有价值的洞察。因此,数据转换对电子商务企业至关重要。 **银行业** 银行行业也高度依赖数据。从客户信息到为客户提供个性化优惠,银行通常会消耗大量数据。数据转换可以帮助银行机构从原始数据中获得有价值的洞察。 **医疗保健** 在经历数字化转型的众多行业中,医疗保健行业处于最前沿。成千上万家智能医院和医疗机构正在将人工智能融入他们识别潜在疾病和运行的方式中。 **金融** 金融机构会从多种来源接收客户信息。这些客户信息无法直接用于业务。因此,必须进行数据转换,将数据从原始格式转换为有意义的信息。 **数据转换将如何使我的业务受益?** 没有数据转换,数据分析解决方案将不完整。低质量的数据不仅代价高昂,而且几乎无用。企业必须能够提取并转换数据为有用的信息,以保持敏捷和适应性。以下是我们总结的数据转换服务对企业的部分好处: **提升数据质量** 低质量数据可能会引发许多问题。当你转换数据时,你可以为组织提供消除质量问题的机会,并减少误解的可能性,从而确保业务顺利运行。 **降低风险** 当你使用不一致、有冲突的数据时,你可能会危及你的财务和声誉利益。标准化和高质量的数据对于降低这些风险至关重要。 **获得更多的商业智能和分析数据** 大多数公司并未分析其数据以获取商业智能。数据转换工具在提高公司数据的可访问性、标准化数据并将其用于智能分析方面非常有效。 **高效的数据管理** 当数据来自多个来源时,元数据一致性问题日益突出。数据转换将帮助你改善元数据,并更准确地理解数据集。 **数据可视化** 在数据转换过程中,数据可视化是最关键的步骤之一。通过减少噪音和改善数据结构,可以更容易地进行准确和深入的数据分析。 **数据转换过程包括哪些步骤?** Algoscale Technologies 数据转换过程包含以下多个步骤: **数据发现** 要转换数据,我们首先必须识别并理解源文件中所包含的信息。源数据分析需要考虑数据质量、质量属性和源数据的结构。通过这种方法,可以进行更深入的数据分析,并产生有价值的商业智能。 **数据映射** 在这一过程中,分析师定义哪些标准用于修改、匹配、过滤、连接和聚合数据源中的各个字段。映射包括从多个外部和内部来源提取商业价值,将其统一后,再将数据转换为分析和运营格式。 **数据提取** 数据迁移过程中的一个步骤涉及将数据从源系统转移到目标系统。数据可能来自结构化来源(如数据库)或非结构化来源(如事件流、日志文件)。 **转换数据** 这是数据转换过程的最后一步。来自多个结构化或非结构化来源的数据被收集并转换为业务可高效管理的格式。 **数据审查** 数据转换完成后,你需要再次检查数据,以确保转换准确无误。审查过程类似于质量保证过程。 **有哪些不同的数据转换方法?** 有几种数据转换方法可以用于从数据中获得有价值的洞察: **手动数据转换** 下一步是手动编写一小段代码以实现数据转换。R、Python和SQL是最流行的几种编程语言,可用于手动数据转换。手动数据转换方法耗时耗力,需要大量时间用于手动编码转换、测试转换和维护转换代码。 **使用本地ETL工具进行数据转换** ETL代表提取、转换和加载。它主要包括从一个或多个来源提取数据,将其转换为一致的格式,然后加载到目标位置。使用本地ETL工具进行数据转换可能非常昂贵,因此,许多公司正在转向基于云的ETL方法进行数据转换。 **使用基于云的ETL工具进行数据转换** 另一种非常有效的数据转换方法是基于云的ETL工具。通过这些工具,组织可以高效及时地从各种不同来源处理大量数据。这些工具通过云服务器运行,因此比本地ETL方法更具成本效益。 **最佳数据转换工具,助你轻松上路** 市场上有两类数据转换工具,可以帮助你的业务深入挖掘数据,并从中提取有价值的信息: **脚本工具** 这些是常见的数据转换工具,它们使用编程语言(如SQL或Python)进行操作。这类转换通常在仓库内完成,并由一个系统执行,该系统协调所有转换以完成任务。这些工具需要SQL和Python方面的技术专长,才能充分利用企业的数据。 **低代码/无代码工具** 这些是最容易使用的数据转换工具。通过这种工具,企业可以使用简单直观的界面从多个来源将数据加载到数据仓库中,使数据管理变得容易。这些工具的一大优势在于,它们不需要任何技术专业知识,就可以展示其从数据中生成有价值洞察的能力。 ---**推文分享 邮件** 数据分析 大数据 数字转型 金融 医疗保健
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘