Social Media Algorithms Warp How People Learn from Each Other

2023-09-03
关注

The following essay is reprinted with permission from The Conversation, an online publication covering the latest research.

People’s daily interactions with online algorithms affect how they learn from others, with negative consequences including social misperceptions, conflict and the spread of misinformation, my colleagues and I have found.

People are increasingly interacting with others in social media environments where algorithms control the flow of social information they see. Algorithms determine in part which messages, which people and which ideas social media users see.

On social media platforms, algorithms are mainly designed to amplify information that sustains engagement, meaning they keep people clicking on content and coming back to the platforms. I’m a social psychologist, and my colleagues and I have found evidence suggesting that a side effect of this design is that algorithms amplify information people are strongly biased to learn from. We call this information “PRIME,” for prestigious, in-group, moral and emotional information.

In our evolutionary past, biases to learn from PRIME information were very advantageous: Learning from prestigious individuals is efficient because these people are successful and their behavior can be copied. Paying attention to people who violate moral norms is important because sanctioning them helps the community maintain cooperation.

But what happens when PRIME information becomes amplified by algorithms and some people exploit algorithm amplification to promote themselves? Prestige becomes a poor signal of success because people can fake prestige on social media. Newsfeeds become oversaturated with negative and moral information so that there is conflict rather than cooperation.

The interaction of human psychology and algorithm amplification leads to dysfunction because social learning supports cooperation and problem-solving, but social media algorithms are designed to increase engagement. We call this mismatch functional misalignment.

Why it matters

One of the key outcomes of functional misalignment in algorithm-mediated social learning is that people start to form incorrect perceptions of their social world. For example, recent research suggests that when algorithms selectively amplify more extreme political views, people begin to think that their political in-group and out-group are more sharply divided than they really are. Such “false polarization” might be an important source of greater political conflict.

Functional misalignment can also lead to greater spread of misinformation. A recent study suggests that people who are spreading political misinformation leverage moral and emotional information – for example, posts that provoke moral outrage – in order to get people to share it more. When algorithms amplify moral and emotional information, misinformation gets included in the amplification.

What other research is being done

In general, research on this topic is in its infancy, but there are new studies emerging that examine key components of algorithm-mediated social learning. Some studies have demonstrated that social media algorithms clearly amplify PRIME information.

Whether this amplification leads to offline polarization is hotly contested at the moment. A recent experiment found evidence that Meta’s newsfeed increases polarization, but another experiment that involved a collaboration with Meta found no evidence of polarization increasing due to exposure to their algorithmic Facebook newsfeed.

More research is needed to fully understand the outcomes that emerge when humans and algorithms interact in feedback loops of social learning. Social media companies have most of the needed data, and I believe that they should give academic researchers access to it while also balancing ethical concerns such as privacy.

What’s next

A key question is what can be done to make algorithms foster accurate human social learning rather than exploit social learning biases. My research team is working on new algorithm designs that increase engagement while also penalizing PRIME information. We argue that this might maintain user activity that social media platforms seek, but also make people’s social perceptions more accurate.

This article was originally published on The Conversation. Read the original article.

  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C011EN RF 音频麦克风

C011型直通台式边界层话筒采用了非常坚固的外壳设计。它们自上而下由实心黄铜制成,确保在最极端环境下的可靠性。它们具有一个内置的幻影电源模块,该模块具有完全的射频保护,以防止在800兆赫-1.2兆赫频段工作的GSM设备的干扰。极性模式:全向频率响应:50赫兹-20千赫灵敏度:-42dB+\/-3dB@1千赫(0dB=1 V\/Pa)阻抗:200欧姆 S\/n比率:58dB最大SPL:120dB 1%THD电源要求:9-48伏幻像电源终端:外接3针XLR

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘