Making Computer Chips Act More like Brain Cells

2022-08-31
关注

The human brain is an amazing computing machine. Weighing only three pounds or so, it can process information a thousand times faster than the fastest supercomputer, store a thousand times more information than a powerful laptop, and do it all using no more energy than a 20-watt lightbulb.

Researchers are trying to replicate this success using soft, flexible organic materials that can operate like biological neurons and someday might even be able to interconnect with them. Eventually, soft “neuromorphic” computer chips could be implanted directly into the brain, allowing people to control an artificial arm or a computer monitor simply by thinking about it.

Like real neurons — but unlike conventional computer chips — these new devices can send and receive both chemical and electrical signals. “Your brain works with chemicals, with neurotransmitters like dopamine and serotonin. Our materials are able to interact electrochemically with them,” says Alberto Salleo, a materials scientist at Stanford University who wrote about the potential for organic neuromorphic devices in the 2021 Annual Review of Materials Research.

Salleo and other researchers have created electronic devices using these soft organic materials that can act like transistors (which amplify and switch electrical signals) and memory cells (which store information) and other basic electronic components. 

The work grows out of an increasing interest in neuromorphic computer circuits that mimic how human neural connections, or synapses, work. These circuits, whether made of silicon, metal or organic materials, work less like those in digital computers and more like the networks of neurons in the human brain.

Conventional digital computers work one step at a time, and their architecture creates a fundamental division between calculation and memory. This division means that ones and zeroes must be shuttled back and forth between locations on the computer processor, creating a bottleneck for speed and energy use.

The brain does things differently. An individual neuron receives signals from many other neurons, and all these signals together add up to affect the electrical state of the receiving neuron. In effect, each neuron serves as both a calculating device — integrating the value of all the signals it has received — and a memory device: storing the value of all of those combined signals as an infinitely variable analog value, rather than the zero-or-one of digital computers.

Researchers have developed a number of different “memristive” devices that mimic this ability. When you run electric currents through them, you change the electrical resistance. Like biological neurons, these devices calculate by adding up the values of all the currents they have been exposed to. And they remember through the resulting value their resistance takes. 

A simple organic memristor, for example, might have two layers of electrically conducting materials. When a voltage is applied, electric current drives positively charged ions from one layer into the other, changing how easily the second layer will conduct electricity the next time it is exposed to an electric current. (See diagram.) “It’s a way of letting the physics do the computing,” says Matthew Marinella, a computer engineer at Arizona State University in Tempe who researches neuromorphic computing.

Voltage applied at the gate (G)—for example, from a sensor—drives positive ions from one layer, called the electrolyte, into an adjacent layer, an organic polymer. This changes the polymer’s resistance to a current moving from the source (S) to the drain (D). The amount of resistance represents the value being stored. Credit: Knowable; Source: “Organic electronics for neuromorphic computing,” by Yoeri van de Burgt et al., in Nature Electronics, Vol. 1. Published July 13, 2018 https://doi.org/10.1038/s41928-018-0103-3

The technique also liberates the computer from strictly binary values. “When you have classical computer memory, it’s either a zero or a one. We make a memory that could be any value between zero and one. So you can tune it in an analog fashion,” Salleo says.

At the moment, most memristors and related devices aren’t based on organic materials but use standard silicon chip technology. Some are even used commercially as a way of speeding up artificial intelligence programs. But organic components have the potential to do the job faster while using less energy, Salleo says. Better yet, they could be designed to integrate with your own brain. The materials are soft and flexible, and also have electrochemical properties that allow them to interact with biological neurons. 

For instance, Francesca Santoro, an electrical engineer now at RWTH Aachen University in Germany, is developing a polymer device that takes input from real cells and “learns” from it. In her device, the cells are separated from the artificial neuron by a small space, similar to the synapses that separate real neurons from one another. As the cells produce dopamine, a nerve-signaling chemical, the dopamine changes the electrical state of the artificial half of the device. The more dopamine the cells produce, the more the electrical state of the artificial neuron changes, just as you might see with two biological neurons. (See diagram.) “Our ultimate goal is really to design electronics which look like neurons and act like neurons,” Santoro says. 

The biological neuron releases dopamine (red balls) at its junction with the artificial neuron. A solution in the gap gives the dopamine a positive charge (gold balls), which allows it to flow across the device. Electrical resistance depends on how fast the dopamine is released and how much has accumulated on the artificial neuron. Credit: Knowable; Source: “A biohybrid synapse with neurotransmitter-mediated plasticity,” by Scott T. Keene et al., in Nature Materials, Vol. 19. Published June 15, 2020 https://doi.org/10.1038/s41563-020-0703-y

The approach could offer a better way to use brain activity to drive prosthetics or computer monitors. Today’s systems use standard electronics, including electrodes that can pick up only broad patterns of electrical activity. And the equipment is bulky and requires external computers to operate.

Flexible, neuromorphic circuits could improve this in at least two ways. They would be capable of translating neural signals in a much more granular way, responding to signals from individual neurons. And the devices might also be able to handle some of the necessary computations themselves, Salleo says, which could save energy and boost processing speed.

Low-level, decentralized systems of this sort — with small, neuromorphic computers processing information as it is received by local sensors — are a promising avenue for neuromorphic computing, Salleo and Santoro say. “The fact that they so nicely resemble the electrical operation of neurons makes them ideal for physical and electrical coupling with neuronal tissue,” Santoro says, “and ultimately the brain.”

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

参考译文
让电脑芯片更像脑细胞
人脑是一台神奇的计算机器。它的重量只有3磅左右,处理信息的速度比最快的超级计算机快1000倍,存储信息的速度比一台功能强大的笔记本电脑多1000倍,而完成这一切所需的能量不超过一个20瓦的灯泡。研究人员正试图复制这一成功,他们使用柔软、灵活的有机材料,这些材料可以像生物神经元一样运作,有朝一日甚至可以与它们互联。最终,软的“神经形态”计算机芯片可以直接植入大脑,让人们仅仅通过思考就能控制假肢或电脑显示器。与真正的神经元一样——但与传统的计算机芯片不同——这些新设备可以发送和接收化学信号和电子信号。“你的大脑与化学物质、多巴胺和血清素等神经递质一起工作。我们的材料能够与它们发生电化学反应,”斯坦福大学的材料科学家阿尔贝托·萨里奥(Alberto Salleo)说。他在《2021年材料研究年度评论》(Annual Review of materials Research)上撰文介绍了有机神经形态设备的潜力。萨里奥和其他研究人员已经用这些柔软的有机材料制造出了电子设备,它们可以像晶体管(放大和转换电信号)、记忆细胞(存储信息)和其他基本电子元件一样工作。这项工作源于人们对模仿人类神经连接或突触工作方式的神经形态计算机电路越来越感兴趣。这些电路,无论是由硅、金属还是有机材料制成,工作原理都不太像数字计算机中的电路,而更像人类大脑中的神经元网络。传统的数字计算机一步一步地工作,它们的结构在计算和存储之间形成了基本的区分。这种划分意味着1和0必须在计算机处理器上的位置之间来回切换,从而造成速度和能源使用的瓶颈。大脑的运作方式不同。单个神经元接收来自许多其他神经元的信号,所有这些信号加在一起影响接收神经元的电状态。实际上,每个神经元既是一个计算装置——对它接收到的所有信号的值进行积分——也是一个存储装置:将所有这些组合信号的值存储为无限可变的模拟值,而不是数字计算机的0或1。研究人员已经开发了许多不同的“记忆”设备来模仿这种能力。当电流通过它们时,电阻就会改变。就像生物神经元一样,这些设备通过叠加它们所接触到的所有电流值来进行计算。他们通过结果值记住了他们的抵抗。例如,一个简单的有机忆阻器可能有两层导电材料。当施加电压时,电流驱动带正电的离子从一层进入另一层,改变了第二层在下一次暴露在电流中时导电的容易程度。(见图)。“这是一种让物理来进行计算的方法,”坦佩市亚利桑那州立大学研究神经形态计算的计算机工程师马修·马里内拉(Matthew Marinella)说。该技术还将计算机从严格的二进制值中解放出来。“当你有传统的计算机内存时,它不是0就是1。我们创建的内存可以是0到1之间的任何值。所以你可以用模拟的方式来调节它。” 目前,大多数的忆阻器和相关器件不是基于有机材料,而是使用标准的硅芯片技术。有些甚至在商业上被用作加速人工智能程序的一种方式。萨里奥说,但是有机成分有可能在消耗更少能源的情况下更快地完成这项工作。更好的是,它们可以被设计成与你自己的大脑相结合。这种材料柔软而有弹性,还具有电化学性能,使它们能够与生物神经元相互作用。例如,现任职于德国亚琛工业大学的电气工程师弗朗西斯卡•桑托罗(Francesca Santoro)正在开发一种聚合物设备,这种设备可以从真实的细胞中获取信息并从中“学习”。在她的装置中,细胞与人工神经元之间隔着一个小空间,类似于真正神经元之间的突触。当这些细胞产生多巴胺(一种神经信号化学物质)时,多巴胺会改变设备人工部分的电状态。细胞产生的多巴胺越多,人工神经元的电状态变化就越多,就像你看到的两个生物神经元一样。(见图)。桑托罗说:“我们的最终目标是设计出看起来像神经元、行为也像神经元的电子设备。”这种方法可以提供一种更好的方法,利用大脑活动来驱动假肢或电脑显示器。今天的系统使用标准的电子设备,包括只能采集广泛的电活动模式的电极。该设备体积庞大,需要外部计算机来操作。灵活的神经形态回路至少可以从两个方面改善这种情况。它们将能够以更细粒度的方式翻译神经信号,对来自单个神经元的信号做出反应。萨里奥说,这些设备本身也可能处理一些必要的计算,这可以节省能源,提高处理速度。
  • en
您觉得本篇内容如何
评分

相关产品

EN 650 & EN 650.3 观察窗

EN 650.3 version is for use with fluids containing alcohol.

Acromag 966EN 温度信号调节器

这些模块为多达6个输入通道提供了一个独立的以太网接口。多量程输入接收来自各种传感器和设备的信号。高分辨率,低噪音,A/D转换器提供高精度和可靠性。三路隔离进一步提高了系统性能。,两种以太网协议可用。选择Ethernet Modbus TCP\/IP或Ethernet\/IP。,i2o功能仅在6通道以太网Modbus TCP\/IP模块上可用。,功能

雷克兰 EN15F 其他

品牌;雷克兰 型号; EN15F 功能;防化学 名称;防化手套

Honeywell USA CSLA2EN 电流传感器

CSLA系列感应模拟电流传感器集成了SS490系列线性霍尔效应传感器集成电路。该传感元件组装在印刷电路板安装外壳中。这种住房有四种配置。正常安装是用0.375英寸4-40螺钉和方螺母(没有提供)插入外壳或6-20自攻螺钉。所述传感器、磁通收集器和壳体的组合包括所述支架组件。这些传感器是比例测量的。

TMP Pro Distribution C012EN RF 音频麦克风

C012E射频从上到下由实心黄铜制成,非常适合于要求音质的极端环境,具有非常坚固的外壳。内置的幻像电源模块具有完全的射频保护,以防止在800 Mhz-1.2 Ghz频段工作的GSM设备的干扰。极性模式:心形频率响应:50赫兹-18千赫灵敏度:-47dB+\/-3dB@1千赫

ValueTronics DLRO200-EN 毫欧表

"The DLRO200-EN ducter ohmmeter is a dlro from Megger."

评论

您需要登录才可以回复|注册

提交评论

广告

scientific

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

Bebe打嗝筹集的种子资金数额未披露

提取码
复制提取码
点击跳转至百度网盘