The Technology Pillars for Process Optimization in Manufacturing

2023-03-26 07:01:12
关注

Illustration: © IoT For All

With more and more technological advancements, implementing an achievable process optimization plan is now plausible. However, you must first find the technologies and approaches that work best for your manufacturing operation. The key to optimizing a manufacturing process is to embrace some of the advanced Industry 4.0 technologies available today. By understanding which technology is best for your manufacturing business, you will be one step closer to optimizing your process. Let’s dive a bit deeper into what this means and into the main technology pillars of process optimization in manufacturing.

“The key to optimizing a manufacturing process is to embrace some of the advanced Industry 4.0 technologies available today.”

-Augury

Adopting Industry 4.0 Technologies

The implementation of automation and use of data in manufacturing is what’s called “Industry 4.0,” with use cases such as predictive maintenance and predictive quality. Industry 4.0 includes the following technologies critical to process optimization:

  1. Real-time data connectivity and capture: Use industrial IoT connectivity to securely connect to the production line assets and capture data in a central time-series repository – either on-premises or on-cloud.

  2. Process-based machine learning: Use process-based artificial intelligence to get a holistic, detailed view of the full manufacturing process and to discover and surface process issues that need attention. By using machine learning algorithms to process and analyze real-time data, not only can process inefficiencies be identified but they can also be predicted and even avoided.

  3. Digital Twin visualization: A digital twin is a virtual representation that matches the attributes and operational metrics of a “physical” production line through the captured production-line data. A digital twin of the production line enables you to quickly pinpoint performance anomalies and their root cause, providing you with actionable insights and presenting them in the context of the production line. With this technology, there is no need for data scientists – the system is easy-to-use and accessible for production teams.

Primary Causes of Process Inefficiencies

As mentioned above, process engineers can identify inefficiencies by implementing process-based artificial intelligence, such as the formation of undesired side products, process instabilities, impurities, and more. This can be done with Automated Root Cause Analysis.

Augury

Before understanding how this will help you achieve process optimization, let’s take a look at the difference between traditional root cause analysis and automated root cause analysis.

Firstly, traditional root cause analysis takes time – often measured in days – and expert resources from multiple teams. With massive amounts of data captured from thousands of tags every minute, it’s almost impossible to find correlations between the operational variables that lead to process inefficiency.

The longer the analysis takes, the more process inefficiency happens in the production line. For this reason, production teams need a faster and more accurate way of finding early events that lead to production failures.

Automated root cause analysis enriches historical and real-time asset data and applies machine learning algorithms to automatically trace the causal chain of events leading to production failures. By doing so, investigation teams get fast and accurate insight into early symptoms of process inefficiencies, making it easy to pinpoint and mitigate the root causes.

Predicting Process Inefficiencies

Having the ability to identify why process inefficiencies in your production line happen is priceless. But if you take this one step forward, you can also anticipate exactly when they will happen.

By applying industrial predictive analytics, you can translate data into predictive insights. Machine learning algorithms can then be implemented to identify relevant events and predict their outcomes. For example, predicting when undesired side products will form or when a specific process instability will happen. By doing this, process teams can increase yield and prevent imminent quality failures.

Once we’ve understood why process inefficiencies happen and can predict them before they happen, it is fundamental to know how to optimize the manufacturing process with these insights. Predictive simulation determines how specific inefficiencies can be eradicated by simulating how processes will behave in different scenarios and how to prevent the anticipated process inefficiency. By using predictive simulation, process teams can:

  • Close the loop and take action on analytics recommendations.
  • Adjust only the production settings that will eliminate process inefficiencies.
  • Reduce the risks of misadjusting production settings.

An Opportunity for Actionable Insights

The coming of age of industrial artificial intelligence, specifically machine learning, has introduced an opportunity to harness production-line data to surface actionable insights and drive continuous improvement in manufacturing processes. Additionally, digital twin visualization makes it now possible for process engineering teams to use these insights independently of data scientists and act promptly.

Tweet

Share

Share

Email

  • Artificial Intelligence
  • Automation
  • Digital Transformation
  • Industrial Automation
  • Industrial Internet of Things

  • Artificial Intelligence
  • Automation
  • Digital Transformation
  • Industrial Automation
  • Industrial Internet of Things

参考译文
制造过程优化的技术支柱
插图:© IoT For All --> 随着越来越多的技术进步,实施一个可实现的流程优化计划现在已经变得可行。然而,你首先需要找到最适合你制造业务的技术和方法。优化制造流程的关键在于采用当今可用的先进工业4.0技术。通过了解哪些技术最适合你的制造业务,你将更接近优化流程的目标。让我们深入探讨一下这意味着什么,以及制造流程优化的主要技术支柱。 “优化制造流程的关键在于采用当今可用的先进工业4.0技术。”-Augury 采用工业4.0技术 在制造过程中实现自动化和使用数据被称为“工业4.0”,其应用场景包括预测性维护和预测性质量。工业4.0包含以下对流程优化至关重要的技术: 实时数据连接和采集:使用工业物联网连接,安全连接生产线资产,并在中心时间序列存储库中采集数据——可以是本地存储,也可以是云端存储。 基于流程的机器学习:使用基于流程的人工智能,对整个制造流程进行全面、详细地了解,并发现和揭示需要关注的流程问题。通过使用机器学习算法处理和分析实时数据,不仅可以识别流程低效之处,还可以预测甚至避免它们。 数字孪生可视化:数字孪生是一种虚拟表示,通过采集的生产线数据,与“物理”生产线的属性和操作指标完全匹配。生产线的数字孪生使你能够快速定位性能异常及其根本原因,为你提供可操作的洞察,并以生产线为背景呈现这些信息。使用这项技术,不需要数据科学家——该系统对生产团队来说易于使用,便于访问。 流程低效的主要原因 如上所述,流程工程师可以通过实施基于流程的人工智能识别低效之处,例如不希望出现的副产物形成、流程不稳定、杂质等。这可以通过自动根本原因分析来实现。在了解这项技术如何帮助你实现流程优化之前,让我们先看一下传统根本原因分析和自动根本原因分析之间的区别。首先,传统根本原因分析耗时较长——通常需要几天时间,并需要多个团队的专家资源。从成千上万个标签中每分钟采集大量数据,几乎不可能找到导致流程低效的操作变量之间的相关性。分析时间越长,生产线中发生的流程低效问题就越多。因此,生产团队需要一种更快、更准确的方式来发现导致生产失败的早期事件。 自动根本原因分析丰富了历史和实时的资产数据,并应用机器学习算法自动追踪导致生产失败的事件因果链。通过这样做,调查团队可以快速、准确地获得流程低效早期症状的洞察,从而可以轻松定位并缓解根本原因。 预测流程低效 识别生产线中流程低效发生原因的能力是无价的。但如果你再进一步,你还可以准确预测它们何时会发生。通过应用工业预测分析,你可以将数据转化为预测性洞察。然后可以实施机器学习算法,以识别相关事件并预测其结果。例如,预测不希望出现的副产物何时会形成,或者特定流程不稳定何时会发生。通过这样做,流程团队可以提高产量,并防止即将发生的质量失败。 一旦我们了解了流程低效发生的原因,并能够在它们发生之前预测它们,就至关重要地知道如何利用这些洞察优化制造流程。预测性模拟可以确定如何通过模拟流程在不同场景下的行为,从而根除特定低效问题,并防止预期的流程低效。通过使用预测性模拟,流程团队可以: 闭环并采取分析建议中的行动。 只调整那些能消除流程低效的生产设置。 减少因错误调整生产设置而带来的风险。 行动洞察的机遇 工业人工智能,尤其是机器学习的成熟,为利用生产线数据提供了一个机会,从而揭示可操作的洞察,并推动制造流程的持续改进。此外,数字孪生可视化现在使得流程工程师团队能够在不需要数据科学家的情况下使用这些洞察,并迅速采取行动。TweetShareShareEmail 人工智能自动化数字转型工业自动化工业物联网 --> 人工智能自动化数字转型工业自动化工业物联网
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

广告

iotforall

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

ChatGPT带火的新职业:聊聊天就能年入33万美元?

提取码
复制提取码
点击跳转至百度网盘